IDEAS home Printed from https://ideas.repec.org/p/fam/rpseri/rp57.html
   My bibliography  Save this paper

Nonparametric Estimation of Copulas for Time Series

Author

Listed:
  • Jean-David FERMANIAN

    (CDC Ixis Capital Markets and CREST)

  • Olivier SCAILLET

    (HEC Genève and FAME, Université de Genève)

Abstract

We consider a nonparametric method to estimate copulas, i.e. functions linking joint distributions to their univariate margins. We derive the asymptotic properties of kernel estimators of copulas and their derivatives in the context of a multivariate stationary process satisfactory strong mixing conditions. Monte Carlo results are reported for a stationary vector autoregressive process of order one with Gaussian innovations. An empirical illustration containing a comparison with the independent, comotonic and Gaussian copulas is given for European and US stock index returns.

Suggested Citation

  • Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
  • Handle: RePEc:fam:rpseri:rp57
    as

    Download full text from publisher

    File URL: http://www.swissfinanceinstitute.ch/rp57.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    3. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    4. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1981. "A Re-examination of Traditional Hypotheses about the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 36(4), pages 769-799, September.
    5. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
    6. Yacine Aït-Sahalia, 1999. "Transition Densities for Interest Rate and Other Nonlinear Diffusions," Journal of Finance, American Finance Association, vol. 54(4), pages 1361-1395, August.
    7. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    8. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    9. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    10. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    11. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 85-107, March.
    12. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    13. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    14. Genton M.G. & Ronchetti E., 2003. "Robust Indirect Inference," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 67-76, January.
    15. Chapman, David A & Long, John B, Jr & Pearson, Neil D, 1999. "Using Proxies for the Short Rate: When Are Three Months Like an Instant?," Review of Financial Studies, Society for Financial Studies, pages 763-806.
    16. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    17. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    18. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    19. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    20. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382.
    21. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    22. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    23. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
    24. Dell'Aquila, Rosario & Ronchetti, Elvezio & Trojani, Fabio, 2003. "Robust GMM analysis of models for the short rate process," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 373-397, May.
    25. Brennan, Michael J. & Schwartz, Eduardo S., 1977. "Savings bonds, retractable bonds and callable bonds," Journal of Financial Economics, Elsevier, vol. 5(1), pages 67-88, August.
    26. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    27. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    28. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    29. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-487.
    30. Stanton, Richard, 1997. " A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    31. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    32. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.
    33. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Nonparametric; Kernel; Time Series; Copulas; Dependence Measures; Risk Management; Loss Severity Distribution;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fam:rpseri:rp57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marilyn Barja). General contact details of provider: http://edirc.repec.org/data/fameech.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.