IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0202356.html
   My bibliography  Save this paper

Tail Dependence of Factor Models

Author

Listed:
  • Y. Malevergne

    (Univ. Nice and Univ. Lyon I)

  • D. Sornette

    (CNRS and Univ. Nice and UCLA)

Abstract

Using the framework of factor models, we establish the general expression of the coefficient of tail dependence between the market and a stock (i.e., the probability that the stock incurs a large loss, assuming that the market has also undergone a large loss) as a function of the parameters of the underlying factor model and of the tail parameters of the distributions of the factor and of the idiosyncratic noise of each stock. Our formula holds for arbitrary marginal distributions and in addition does not require any parameterization of the multivariate distributions of the market and stocks. The determination of the extreme parameter, which is not accessible by a direct statistical inference, is made possible by the measurement of parameters whose estimation involves a significant part of the data with sufficient statistics. Our empirical tests find a good agreement between the calibration of the tail dependence coefficient and the realized large losses over the period from 1962 to 2000. Nevertheless, a bias is detected which suggests the presence of an outlier in the form of the crash of October 1987.

Suggested Citation

  • Y. Malevergne & D. Sornette, 2002. "Tail Dependence of Factor Models," Papers cond-mat/0202356, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0202356
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0202356
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. Lucas, Andre & Klaassen, Pieter & Spreij, Peter & Straetmans, Stefan, 2001. "An analytic approach to credit risk of large corporate bond and loan portfolios," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1635-1664, September.
    3. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    4. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    5. Patton, Andrew J, 2001. "Estimation of Copula Models for Time Series of Possibly Different Length," University of California at San Diego, Economics Working Paper Series qt3fc1c8hw, Department of Economics, UC San Diego.
    6. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    2. Y. Malevergne & D. Sornette, 2002. "Investigating Extreme Dependences: Concepts and Tools," Papers cond-mat/0203166, arXiv.org.
    3. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    4. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0202356. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.