IDEAS home Printed from https://ideas.repec.org/p/red/sed009/666.html
   My bibliography  Save this paper

Sectoral Price Data and Models of Price Setting

Author

Listed:
  • Mirko Wiederholt

    (Northwestern University)

  • Emanuel Moench

    (Federal Reserve Bank of New York)

  • Bartosz Maćkowiak

    (European Central Bank)

Abstract

We use a statistical model to estimate impulse responses of sectoral price indices to aggregate shocks and to sector-specific shocks. In the median sector, 100 percent of the long-run response of the sectoral price index to a sector-specific shock occurs in the month of the shock. The Calvo model and the sticky-information model match this finding only under extreme assumptions concerning the profit-maximizing price. By contrast, the rational inattention model matches this finding without an extreme assumption concerning the profit-maximizing price. Furthermore, we find little variation across sectors in the speed of response of sectoral price indices to sector-specific shocks. The rational inattention model matches this finding, while the Calvo model predicts far too much cross-sectional variation in the speed of response to sector-specific shocks.

Suggested Citation

  • Mirko Wiederholt & Emanuel Moench & Bartosz Maćkowiak, 2009. "Sectoral Price Data and Models of Price Setting," 2009 Meeting Papers 666, Society for Economic Dynamics.
  • Handle: RePEc:red:sed009:666
    as

    Download full text from publisher

    File URL: https://red-files-public.s3.amazonaws.com/meetpapers/2009/paper_666.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 285-310, National Bureau of Economic Research, Inc.
    3. Bartosz Maćkowiak & Mirko Wiederholt, 2015. "Business Cycle Dynamics under Rational Inattention," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1502-1532.
    4. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    5. Bartosz Mackowiak & Mirko Wiederholt, 2009. "Optimal Sticky Prices under Rational Inattention," American Economic Review, American Economic Association, vol. 99(3), pages 769-803, June.
    6. Mark Gertler & John Leahy, 2008. "A Phillips Curve with an Ss Foundation," Journal of Political Economy, University of Chicago Press, vol. 116(3), pages 533-572, June.
    7. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    8. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    9. Ricardo Reis & Mark W. Watson, 2007. "Measuring Changes in the Value of the Numeraire," Working Papers 2007-7, Princeton University. Economics Department..
    10. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    11. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
    12. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    13. Mark Bils & Peter J. Klenow, 2004. "Some Evidence on the Importance of Sticky Prices," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 947-985, October.
    14. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    17. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    18. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    19. Del Negro, Marco & Otrok, Christopher, 2007. "99 Luftballons: Monetary policy and the house price boom across U.S. states," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1962-1985, October.
    20. Ricardo Reis, 2006. "Inattentive Producers," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(3), pages 793-821.
    21. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    22. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    23. Emi Nakamura & Jón Steinsson, 2008. "Five Facts about Prices: A Reevaluation of Menu Cost Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(4), pages 1415-1464.
    24. Patrick J. Kehoe & Virgiliu Midrigan, 2007. "Sticky prices and sectoral real exchange rates," Working Papers 656, Federal Reserve Bank of Minneapolis.
    25. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    26. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    27. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Bartosz Mackowiak & Frank Smets, 2008. "On implications of micro price data for macro models," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    3. Alex Nikolsko‐Rzhevskyy & Oleksandr Talavera & Nam Vu, 2023. "The flood that caused a drought," Economic Inquiry, Western Economic Association International, vol. 61(4), pages 965-981, October.
    4. Andrade, Philippe & Zachariadis, Marios, 2016. "Global versus local shocks in micro price dynamics," Journal of International Economics, Elsevier, vol. 98(C), pages 78-92.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Terence Tai Leung Chong & M. S. Rafiq & Tingting Juni Zhu & Zhang Wu, 2019. "Are Prices Sticky In Large Developing Economies? An Empirical Comparison Of China And India," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(02), pages 341-363, March.
    7. Hwee Kwan Chow & Keen Meng Choy, 2008. "Forecasting Business Cycles in a Small Open Economy: A Dynamic Factor Model for Singapore," Economic Growth Centre Working Paper Series 0802, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    8. Klenow, Peter J. & Malin, Benjamin A., 2010. "Microeconomic Evidence on Price-Setting," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 6, pages 231-284, Elsevier.
    9. Bartosz Mackowiak & Mirko Wiederholt, 2009. "Optimal Sticky Prices under Rational Inattention," American Economic Review, American Economic Association, vol. 99(3), pages 769-803, June.
    10. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    11. Dhyne, Emmanuel & Fuss, Catherine & Pesaran, M. Hashem & Sevestre, Patrick, 2011. "Lumpy Price Adjustments: A Microeconometric Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 529-540.
    12. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    13. Guenter W. Beck & Kirstin Hubrich & Massimiliano Marcellino, 2016. "On the Importance of Sectoral and Regional Shocks for Price‐Setting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1234-1253, November.
    14. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    15. Cosmin Ilut & Rosen Valchev & Nicolas Vincent, 2020. "Paralyzed by Fear: Rigid and Discrete Pricing Under Demand Uncertainty," Econometrica, Econometric Society, vol. 88(5), pages 1899-1938, September.
    16. Beck, Guenter W. & Hubrich, Kirstin & Marcellino, Massimiliano, 2009. "On the importance of sectoral shocks for price-setting," CFS Working Paper Series 2009/32, Center for Financial Studies (CFS).
    17. Sonia de Lucas Santos & M. Jesús Delgado Rodríguez & Inmaculada Álvarez Ayuso & José Luis Cendejas Bueno, 2011. "Los ciclos económicos internacionales: antecedentes y revisión de la literatura," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(95), pages 73-84, Agosto.
    18. Etienne Gagnon & David López-Salido & Nicolas Vincent, 2013. "Individual Price Adjustment along the Extensive Margin," NBER Macroeconomics Annual, University of Chicago Press, vol. 27(1), pages 235-281.
    19. Bartosz Maćkowiak & Filip Matějka & Mirko Wiederholt, 2023. "Rational Inattention: A Review," Journal of Economic Literature, American Economic Association, vol. 61(1), pages 226-273, March.
    20. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed009:666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.