IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/46250.html
   My bibliography  Save this paper

Relevant States and Memory in Markov Chain Bootstrapping and Simulation

Author

Listed:
  • Cerqueti, Roy
  • Falbo, Paolo
  • Pelizzari, Cristian

Abstract

Markov chain theory is proving to be a powerful approach to bootstrap highly nonlinear time series. In this work we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping: preserving the “structural” similarity between the original and the simulated series and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the method proposed here.

Suggested Citation

  • Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2013. "Relevant States and Memory in Markov Chain Bootstrapping and Simulation," MPRA Paper 46250, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:46250
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/46250/1/MPRA_paper_46250.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/46254/1/MPRA_paper_46250.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stanislav Anatolyev & Andrey Vasnev, 2002. "Markov chain approximation in bootstrapping autoregressions," Economics Bulletin, AccessEcon, vol. 3(19), pages 1-8.
    2. M. Rajarshi, 1990. "Bootstrap in Markov-sequences based on estimates of transition density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 253-268, June.
    3. Chao, Gary H., 2013. "Production and availability policies through the Markov Decision Process and myopic methods for contractual and selective orders," European Journal of Operational Research, Elsevier, vol. 225(3), pages 383-392.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    6. White, D. J., 1987. "Infinite horizon Markov decision processes with unknown or variable discount factors," European Journal of Operational Research, Elsevier, vol. 28(1), pages 96-100, January.
    7. Cerqueti, Roy & Falbo, Paolo & Guastaroba, Gianfranco & Pelizzari, Cristian, 2013. "A Tabu Search heuristic procedure in Markov chain bootstrapping," European Journal of Operational Research, Elsevier, vol. 227(2), pages 367-384.
    8. Paparoditis, Efstathios & Politis, Dimitris N., 2001. "A Markovian Local Resampling Scheme For Nonparametric Estimators In Time Series Analysis," Econometric Theory, Cambridge University Press, vol. 17(3), pages 540-566, June.
    9. Efstathios Paparoditis & Dimitris N. Politis, 2002. "The tapered block bootstrap for general statistics from stationary sequences," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 131-148, June.
    10. repec:ebl:ecbull:v:3:y:2002:i:19:p:1-8 is not listed on IDEAS
    11. José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
    12. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    13. Hall, Peter, 1985. "Resampling a coverage pattern," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 231-246, September.
    14. Patrice Bertail & Stéphan Clémençon, 2007. "Second-order properties of regeneration-based bootstrap for atomic Markov chains," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 109-122, May.
    15. White, Chelsea C. & White, Douglas J., 1989. "Markov decision processes," European Journal of Operational Research, Elsevier, vol. 39(1), pages 1-16, March.
    16. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    17. Ohno, Katsuhisa & Boh, Toshitaka & Nakade, Koichi & Tamura, Takayoshi, 2016. "New approximate dynamic programming algorithms for large-scale undiscounted Markov decision processes and their application to optimize a production and distribution system," European Journal of Operational Research, Elsevier, vol. 249(1), pages 22-31.
    18. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    19. Joel L. Horowitz, 2003. "Bootstrap Methods for Markov Processes," Econometrica, Econometric Society, vol. 71(4), pages 1049-1082, July.
    20. Buhlmann P., 2002. "Sieve Bootstrap With Variable-Length Markov Chains for Stationary Categorical Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 443-471, June.
    21. Pandelis, Dimitrios G., 2010. "Markov decision processes with multidimensional action spaces," European Journal of Operational Research, Elsevier, vol. 200(2), pages 625-628, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Cerqueti & Paolo Falbo & Cristian Pelizzari & Federica Ricca & Andrea Scozzari, 2017. "A mixed integer linear program to compress transition probability matrices in Markov chain bootstrapping," Annals of Operations Research, Springer, vol. 248(1), pages 163-187, January.
    2. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    3. Chen, Yi-Ting & Sun, Edward W. & Lin, Yi-Bing, 2020. "Merging anomalous data usage in wireless mobile telecommunications: Business analytics with a strategy-focused data-driven approach for sustainability," European Journal of Operational Research, Elsevier, vol. 281(3), pages 687-705.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    2. Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
    3. Jessica James & Louis Yang, 2010. "Stop-losses, maximum drawdown-at-risk and replicating financial time series with the stationary bootstrap," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 1-12.
    4. Roy Cerqueti & Paolo Falbo & Cristian Pelizzari & Federica Ricca & Andrea Scozzari, 2017. "A mixed integer linear program to compress transition probability matrices in Markov chain bootstrapping," Annals of Operations Research, Springer, vol. 248(1), pages 163-187, January.
    5. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    6. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    7. Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    8. Manzan, Sebastiano & Zerom, Dawit, 2008. "A bootstrap-based non-parametric forecast density," International Journal of Forecasting, Elsevier, vol. 24(3), pages 535-550.
    9. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    10. Patrice Bertail & Stéphan Clémençon, 2006. "Approximate Regenerative-block Bootstrap for Markov Chains : Some Simulation Studies," Working Papers 2006-19, Center for Research in Economics and Statistics.
    11. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    12. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    13. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    14. Hubert Dichtl & Wolfgang Drobetz & Martin Wambach, 2014. "Where is the value added of rebalancing? A systematic comparison of alternative rebalancing strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(3), pages 209-231, August.
    15. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    16. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
    17. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    18. Dichtl, Hubert & Drobetz, Wolfgang, 2014. "Are stock markets really so inefficient? The case of the “Halloween Indicator”," Finance Research Letters, Elsevier, vol. 11(2), pages 112-121.
    19. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    20. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.