Relevant states and memory in Markov chain bootstrapping and simulation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2016.06.006
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2013. "Relevant States and Memory in Markov Chain Bootstrapping and Simulation," MPRA Paper 46250, University Library of Munich, Germany.
References listed on IDEAS
- Stanislav Anatolyev & Andrey Vasnev, 2002. "Markov chain approximation in bootstrapping autoregressions," Economics Bulletin, AccessEcon, vol. 3(19), pages 1-8.
- Ryan Sullivan & Allan Timmermann & Halbert White, 1999.
"Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap,"
Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
- Sullivan, Ryan & Timmermann, Allan & White, Halbert, 1998. "Data snooping, technical trading, rule performance, and the bootstrap," LSE Research Online Documents on Economics 119144, London School of Economics and Political Science, LSE Library.
- Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 1998. "Data-Snooping, Technical Trading Rule Performance and the Bootstrap," CEPR Discussion Papers 1976, C.E.P.R. Discussion Papers.
- Allan Timmermann & Halbert White & Ryan Sullivan, 1998. "Data-Snooping, Technical Trading, Rule Performance and the Bootstrap," FMG Discussion Papers dp303, Financial Markets Group.
- M. Rajarshi, 1990. "Bootstrap in Markov-sequences based on estimates of transition density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 253-268, June.
- Chao, Gary H., 2013. "Production and availability policies through the Markov Decision Process and myopic methods for contractual and selective orders," European Journal of Operational Research, Elsevier, vol. 225(3), pages 383-392.
- Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
- White, Chelsea C. & White, Douglas J., 1989. "Markov decision processes," European Journal of Operational Research, Elsevier, vol. 39(1), pages 1-16, March.
- White, D. J., 1987. "Infinite horizon Markov decision processes with unknown or variable discount factors," European Journal of Operational Research, Elsevier, vol. 28(1), pages 96-100, January.
- Ohno, Katsuhisa & Boh, Toshitaka & Nakade, Koichi & Tamura, Takayoshi, 2016. "New approximate dynamic programming algorithms for large-scale undiscounted Markov decision processes and their application to optimize a production and distribution system," European Journal of Operational Research, Elsevier, vol. 249(1), pages 22-31.
- Cerqueti, Roy & Falbo, Paolo & Guastaroba, Gianfranco & Pelizzari, Cristian, 2013. "A Tabu Search heuristic procedure in Markov chain bootstrapping," European Journal of Operational Research, Elsevier, vol. 227(2), pages 367-384.
- Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
- Paparoditis, Efstathios & Politis, Dimitris N., 2001. "A Markovian Local Resampling Scheme For Nonparametric Estimators In Time Series Analysis," Econometric Theory, Cambridge University Press, vol. 17(3), pages 540-566, June.
- Joel L. Horowitz, 2003. "Bootstrap Methods for Markov Processes," Econometrica, Econometric Society, vol. 71(4), pages 1049-1082, July.
- Efstathios Paparoditis & Dimitris N. Politis, 2002. "The tapered block bootstrap for general statistics from stationary sequences," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 131-148, June.
- repec:ebl:ecbull:v:3:y:2002:i:19:p:1-8 is not listed on IDEAS
- José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
- Buhlmann P., 2002. "Sieve Bootstrap With Variable-Length Markov Chains for Stationary Categorical Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 443-471, June.
- Pandelis, Dimitrios G., 2010. "Markov decision processes with multidimensional action spaces," European Journal of Operational Research, Elsevier, vol. 200(2), pages 625-628, January.
- Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992.
"Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,"
Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
- Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
- Hall, Peter, 1985. "Resampling a coverage pattern," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 231-246, September.
- Patrice Bertail & Stéphan Clémençon, 2007. "Second-order properties of regeneration-based bootstrap for atomic Markov chains," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 109-122, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roy Cerqueti & Paolo Falbo & Cristian Pelizzari & Federica Ricca & Andrea Scozzari, 2017. "A mixed integer linear program to compress transition probability matrices in Markov chain bootstrapping," Annals of Operations Research, Springer, vol. 248(1), pages 163-187, January.
- Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
- Chen, Yi-Ting & Sun, Edward W. & Lin, Yi-Bing, 2020. "Merging anomalous data usage in wireless mobile telecommunications: Business analytics with a strategy-focused data-driven approach for sustainability," European Journal of Operational Research, Elsevier, vol. 281(3), pages 687-705.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
- Roy Cerqueti & Paolo Falbo & Cristian Pelizzari & Federica Ricca & Andrea Scozzari, 2017. "A mixed integer linear program to compress transition probability matrices in Markov chain bootstrapping," Annals of Operations Research, Springer, vol. 248(1), pages 163-187, January.
- Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Manzan, Sebastiano & Zerom, Dawit, 2008. "A bootstrap-based non-parametric forecast density," International Journal of Forecasting, Elsevier, vol. 24(3), pages 535-550.
- Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
- Jessica James & Louis Yang, 2010. "Stop-losses, maximum drawdown-at-risk and replicating financial time series with the stationary bootstrap," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 1-12.
- Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011.
"Cross-sectional dependence robust block bootstrap panel unit root tests,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
- Palm, F.C. & Smeekes, S. & Urbain, J.R.Y.J., 2008. "Cross-sectional dependence robust block bootstrap panel unit root tests," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Edwin D. Maberly & Daniel F. Waggoner, 2000. "Closing the question on the continuation of turn-of-the-month effects: evidence from the S&P 500 Index futures contract," FRB Atlanta Working Paper 2000-11, Federal Reserve Bank of Atlanta.
- Ma-Ju Wang, 2014. "A Study on the Differences in Adopting Cash Refund Capital Reduction and Stock Repurchase By Companies in Bull and Bear Stock Markets," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(9), pages 1237-1253, September.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Zakamulin, Valeriy & Giner, Javier, 2022. "Time series momentum in the US stock market: Empirical evidence and theoretical analysis," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
- Jin, Xiaoye, 2022. "Testing technical trading strategies on China's equity ETFs: A skewness perspective," Emerging Markets Review, Elsevier, vol. 51(PA).
- Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
- Guo, Bin & Huang, Fuzhe & Li, Kai, 2022.
"Time to build and bond risk premia,"
Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
- Guo, Bin & Huang, Fuzhe & Li, Kai, 2020. "Time to build and bond risk premia," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
- Martin Scholtus & Dick van Dijk, 2012. "High-Frequency Technical Trading: The Importance of Speed," Tinbergen Institute Discussion Papers 12-018/4, Tinbergen Institute.
- Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
- Guanqing Liu, 2019. "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 669-704, August.
More about this item
Keywords
Bootstrapping; Information theory; Markov chains; Optimization; Simulation;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:256:y:2017:i:1:p:163-177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.