IDEAS home Printed from
   My bibliography  Save this article

Resampling a coverage pattern


  • Hall, Peter


The possibility of resampling (bootstrapping) a spatial pattern is investigated. It is suggested that resampling provides a unified approach to consistemt inference in a wide range of coverage problems. Nevertheless, resampling distorts some of the interactions in the problem, and so introduces biases. The sizes of bias and standard deviation are investigated in the case of estimating sampling variance via resampling.

Suggested Citation

  • Hall, Peter, 1985. "Resampling a coverage pattern," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 231-246, September.
  • Handle: RePEc:eee:spapps:v:20:y:1985:i:2:p:231-246

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    2. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    3. Wolfgang Hardle & Torsten Kleinow & Alexander Korostelev & Camille Logeay & Eckhard Platen, 2008. "Semiparametric diffusion estimation and application to a stock market index," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 81-92.
    4. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    5. Lahiri, Soumendra Nath, 1997. "On Inconsistency of the Jackknife-after-Bootstrap Bias Estimator for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 15-34, October.
    6. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2017. "Relevant states and memory in Markov chain bootstrapping and simulation," European Journal of Operational Research, Elsevier, vol. 256(1), pages 163-177.
    7. Sjöstedt-de Luna, Sara, 2001. "Resampling non-homogeneous spatial data with smoothly varying mean values," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 373-379, July.
    8. Whitcher, Brandon, 2006. "Wavelet-based bootstrapping of spatial patterns on a finite lattice," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2399-2421, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:20:y:1985:i:2:p:231-246. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.