IDEAS home Printed from https://ideas.repec.org/p/ams/ndfwpp/05-05.html
   My bibliography  Save this paper

A Multi-Step Forecast Density

Author

Listed:
  • Manzan, S.

    () (Universiteit van Amsterdam)

  • Zerom, D.

Abstract

This paper makes two contribution to the literature on density forecasts. First, we propose a novel bootstrap approach to estimate forecasting densities based on nonparametric techniques. The method is based on the Markov Bootstrap that is suitable to resample dependent data. The combination of nonparametric and bootstrap methods delivers density forecasts that are flexible in capturing markovian dependence (linear and nonlinear) occurring in any moment of the distribution. Second, we improve the testing approach to evaluate density forecasts by considering a set of tests for dynamical misspecification such as autocorrelation, heteroskedasticity and neglected nonlinearity. The approach is useful because rejections of the tests give insights into ways to improve the forecasting model. By Monte Carlo simulations we show that the proposed evaluation strategy has much higher power to detect misspecification of the density forecasts compared to previous analysis. The proposed nonparametric-bootstrap forecasting method exhibits the ability to capture correctly the dynamics of linear and nonlinear time series models. We also investigate the performance at higher orders and propose methods to deal with the \u201ccurse of dimensionality\u201d. Finally, we empirically investigate the relevance of the method in out-of-sample forecasting the density of 3 business cycles variables for the US: real GDP, the Coincident Indicator and Industrial Production. The results indicate that the method gives reliable density forecasts for all variables and performs better compared to parametric forecasting methods.

Suggested Citation

  • Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  • Handle: RePEc:ams:ndfwpp:05-05
    as

    Download full text from publisher

    File URL: http://cendef.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics/amsterdam-school-of-economics-research-institute/cendef/working-papers-2005/manzanzerom.pdf?1417181541530
    Download Restriction: no

    References listed on IDEAS

    as
    1. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
    2. Joel L. Horowitz, 2003. "Bootstrap Methods for Markov Processes," Econometrica, Econometric Society, vol. 71(4), pages 1049-1082, July.
    3. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
    4. Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
    5. M. Rajarshi, 1990. "Bootstrap in Markov-sequences based on estimates of transition density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 253-268, June.
    6. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    7. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    8. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
    9. Yongmiao Hong & Haitao Li & Feng Zhao, 2004. "Out-of-Sample Performance of Discrete-Time Spot Interest Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 457-473, October.
    10. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    11. Pesaran, M. Hashem & Potter, Simon M., 1997. "A floor and ceiling model of US output," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 661-695, May.
    12. Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Paparoditis, Efstathios & Politis, Dimitris N., 2001. "A Markovian Local Resampling Scheme For Nonparametric Estimators In Time Series Analysis," Econometric Theory, Cambridge University Press, vol. 17(03), pages 540-566, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ams:ndfwpp:05-05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Cees C.G. Diks). General contact details of provider: http://edirc.repec.org/data/cnuvanl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.