IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range

  • Kristoufek, Ladislav

Mostly used estimators of Hurst exponent for detection of long-range dependence are biased by presence of short-range dependence in the underlying time series. We present confidence intervals estimates for rescaled range and modified rescaled range. We show that the difference in expected values and confidence intervals enables us to use both methods together to clearly distinguish between the two types of processes. The estimates are further applied on Dow Jones Industrial Average between 1944 and 2009 and show that returns do not show any long-range dependence whereas volatility shows both short-range and long-range dependence in the underlying process.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/16424/2/MPRA_paper_16424.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 16424.

as
in new window

Length:
Date of creation: 01 Jul 2009
Date of revision:
Handle: RePEc:pra:mprapa:16424
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andreas S. Andreou & George A. Zombanakis, 2006. "Computational Intelligence in Exchange-Rate Forecasting," Working Papers 49, Bank of Greece.
  2. Chin, Wencheong, 2008. "Spurious long-range dependence: evidence from Malaysian equity markets," MPRA Paper 7914, University Library of Munich, Germany.
  3. T. Di Matteo & T. Aste & Michel M. Dacorogna, 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Econometrics 0503004, EconWPA.
  4. John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000. "Long memory in the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
  5. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
  6. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
  7. Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
  8. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
  9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
  10. Thomas Lux, 2008. "Applications of Statistical Physics in Finance and Economics," Kiel Working Papers 1425, Kiel Institute for the World Economy.
  11. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
  12. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-313, September.
  13. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
  14. Matos, José A.O. & Gama, Sílvio M.A. & Ruskin, Heather J. & Sharkasi, Adel Al & Crane, Martin, 2008. "Time and scale Hurst exponent analysis for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3910-3915.
  15. Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
  16. Berg, Lennart & Lyhagen, Johan, 1996. "Short and Long Run Dependence in Swedish Stock Returns," Working Paper Series 1996:19, Uppsala University, Department of Economics.
  17. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
  18. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16424. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.