IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/125124.html
   My bibliography  Save this paper

Heterogeneous Exposures to Systematic and Idiosyncratic Risk across Crypto Assets: A Divide-and-Conquer Approach

Author

Listed:
  • Aslanidis, Nektarios
  • Bariviera, Aurelio
  • Kapetanios, George
  • Sarafidis, Vasilis

Abstract

This paper analyzes realized return behavior across a broad set of crypto assets by estimating heterogeneous exposures to idiosyncratic and systematic risk. A key challenge arises from the latent nature of broader economy-wide risk sources: macro-financial proxies are unavailable at high-frequencies, while the abundance of low-frequency candidates offers limited guidance on empirical relevance. To address this, we develop a two-stage ``divide-and-conquer'' approach. The first stage estimates exposures to high-frequency idiosyncratic and market risk only, using asset-level IV regressions. The second stage identifies latent economy-wide factors by extracting the leading principal component from the model residuals and mapping it to lower-frequency macro-financial uncertainty and sentiment-based indicators via high-dimensional variable selection. Structured patterns of heterogeneity in exposures are uncovered using Mean Group estimators across asset categories. The method is applied to a broad sample of crypto assets, covering more than 80% of total market capitalization. We document short-term mean reversion and significant average exposures to idiosyncratic volatility and illiquidity. Green and DeFi assets are, on average, more exposed to market-level and economy-wide risk than their non-Green and non-DeFi counterparts. By contrast, stablecoins are less exposed to idiosyncratic, market-level, and economy-wide risk factors relative to non-stablecoins. At a conceptual level, our study develops a coherent framework for isolating distinct layers of risk in crypto markets. Empirically, it sheds light on how return sensitivities vary across digital asset categories -- insights that are important for both portfolio design and regulatory oversight.

Suggested Citation

  • Aslanidis, Nektarios & Bariviera, Aurelio & Kapetanios, George & Sarafidis, Vasilis, 2025. "Heterogeneous Exposures to Systematic and Idiosyncratic Risk across Crypto Assets: A Divide-and-Conquer Approach," MPRA Paper 125124, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:125124
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/125124/1/MPRA_paper_125124.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 54(4), pages 1325-1360, August.
    2. Will Cong & Campbell Harvey & Daniel Rabetti & Zong-Yu Wu, 2025. "An Anatomy of Crypto-Enabled Cybercrimes," Management Science, INFORMS, vol. 71(4), pages 3622-3633, April.
    3. Cong, Lin William & Landsman, Wayne & Maydew, Edward & Rabetti, Daniel, 2023. "Tax-loss harvesting with cryptocurrencies," Journal of Accounting and Economics, Elsevier, vol. 76(2).
    4. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Aslanidis, Nektarios & Bariviera, Aurelio F. & López, Óscar G., 2022. "The link between cryptocurrencies and Google Trends attention," Finance Research Letters, Elsevier, vol. 47(PA).
    7. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    8. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    9. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    10. Agur, Itai & Ari, Anil & Dell’Ariccia, Giovanni, 2022. "Designing central bank digital currencies," Journal of Monetary Economics, Elsevier, vol. 125(C), pages 62-79.
    11. Patrick Augustin & Alexey Rubtsov & Donghwa Shin, 2023. "The Impact of Derivatives on Spot Markets: Evidence from the Introduction of Bitcoin Futures Contracts," Management Science, INFORMS, vol. 69(11), pages 6752-6776, November.
    12. Christian M Hafner, 2020. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
    13. Ferrari Minesso, Massimo & Mehl, Arnaud & Stracca, Livio, 2022. "Central bank digital currency in an open economy," Journal of Monetary Economics, Elsevier, vol. 127(C), pages 54-68.
    14. William N. Goetzmann & Alok Kumar, 2008. "Equity Portfolio Diversification," Review of Finance, European Finance Association, vol. 12(3), pages 433-463.
    15. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    16. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    17. Aslanidis, Nektarios & Bariviera, Aurelio F. & Perez-Laborda, Alejandro, 2021. "Are cryptocurrencies becoming more interconnected?," Economics Letters, Elsevier, vol. 199(C).
    18. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2021. "Sustainable investing in equilibrium," Journal of Financial Economics, Elsevier, vol. 142(2), pages 550-571.
    19. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    20. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    21. Chris Redl, 2017. "The impact of uncertainty shocks in the United Kingdom," Bank of England working papers 695, Bank of England.
    22. Giovanni Caggiano & Efrem Castelnuovo, 2023. "Global financial uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 432-449, April.
    23. Hites Ahir & Nicholas Bloom & Davide Furceri, 2022. "The world uncertainty index," CEP Discussion Papers dp1842, Centre for Economic Performance, LSE.
    24. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    25. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    26. Mianmian Zhang & Bing Zhu & Ziyuan Li & Siyuan Jin & Yong Xia, 2024. "Relationships among return and liquidity of cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-30, December.
    27. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    28. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Assessing international commonality in macroeconomic uncertainty and its effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 273-293, April.
    29. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    30. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    31. Marco Lambrecht & Andis Sofianos & Yilong Xu, 2025. "Does Mining Fuel Bubbles? An Experimental Study on Cryptocurrency Markets," Management Science, INFORMS, vol. 71(3), pages 1865-1888, March.
    32. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    33. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    34. Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
    35. Brauneis, Alexander & Mestel, Roland & Riordan, Ryan & Theissen, Erik, 2021. "How to measure the liquidity of cryptocurrency markets?," Journal of Banking & Finance, Elsevier, vol. 124(C).
    36. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    37. Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019. "An analysis of cryptocurrencies conditional cross correlations," Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
    38. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    39. Anyfantaki, Sofia & Arvanitis, Stelios & Topaloglou, Nikolas, 2021. "Diversification benefits in the cryptocurrency market under mild explosivity," European Journal of Operational Research, Elsevier, vol. 295(1), pages 378-393.
    40. Sebastian Kripfganz & Vasilis Sarafidis, 2021. "Instrumental-variable estimation of large-T panel-data models with common factors," Stata Journal, StataCorp LLC, vol. 21(3), pages 659-686, September.
    41. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    42. Artūras Juodis & Vasilis Sarafidis, 2022. "A Linear Estimator for Factor-Augmented Fixed-T Panels With Endogenous Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 1-15, January.
    43. Giovanna Bua & Daniel Kapp & Federico Ramella & Lavinia Rognone, 2024. "Transition versus physical climate risk pricing in European financial markets: a text-based approach," The European Journal of Finance, Taylor & Francis Journals, vol. 30(17), pages 2076-2110, November.
    44. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    45. Hu, Yitong & Shen, Dehua & Urquhart, Andrew, 2023. "Attention allocation and cryptocurrency return co-movement: Evidence from the stock market," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 1173-1185.
    46. Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
    47. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    48. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    49. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    50. Lintner, John, 1969. "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets: A Reply," The Review of Economics and Statistics, MIT Press, vol. 51(2), pages 222-224, May.
    51. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    52. Michael Sockin & Wei Xiong, 2023. "A Model of Cryptocurrencies," Management Science, INFORMS, vol. 69(11), pages 6684-6707, November.
    53. Gordon, Steven & Li, Zhi & Marthinsen, John, 2023. "A deep analysis of the economics and finance research on cryptocurrencies," Economics Letters, Elsevier, vol. 228(C).
    54. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    2. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2020. "Estimation of large dimensional conditional factor models in finance," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 219-282, Elsevier.
    3. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    4. Aslanidis, Nektarios & Bariviera, Aurelio F. & Savva, Christos S., 2024. "Do online attention and sentiment affect cryptocurrencies’ correlations?," Research in International Business and Finance, Elsevier, vol. 71(C).
    5. Chen, Jia & Cui, Guowei & Sarafidis, Vasilis & Yamagata, Takashi, 2025. "IV Estimation of Heterogeneous Spatial Dynamic Panel Models with Interactive Effects," MPRA Paper 123497, University Library of Munich, Germany.
    6. Yuan Liao & Viktor Todorov, 2024. "Changes in the span of systematic risk exposures," Quantitative Economics, Econometric Society, vol. 15(3), pages 817-847, July.
    7. Alessi, Lucia & Ossola, Elisa & Panzica, Roberto, 2023. "When do investors go green? Evidence from a time-varying asset-pricing model," International Review of Financial Analysis, Elsevier, vol. 90(C).
    8. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    9. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    10. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    11. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    12. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    13. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    14. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    15. Qihui Chen, 2022. "A Unified Framework for Estimation of High-dimensional Conditional Factor Models," Papers 2209.00391, arXiv.org.
    16. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, The University of Osaka, revised Mar 2020.
    17. Wu, Jianhong, 2019. "Detecting irrelevant variables in possible proxies for the latent factors in macroeconomics and finance," Economics Letters, Elsevier, vol. 176(C), pages 60-63.
    18. Zhu, Lin & Jiang, Fuwei & Tang, Guohao & Jin, Fujing, 2024. "From macro to micro: Sparse macroeconomic risks and the cross-section of stock returns," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    19. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2009. "A Robust Criterion for Determining the Number of Factors in Approximate Factor Models," Working Papers ECARES 2009_023, ULB -- Universite Libre de Bruxelles.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    21. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:125124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.