IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2020-5.html
   My bibliography  Save this paper

A Linear Estimator for FactorAugmented Fixed-T Panels with Endogenous Regressors

Author

Listed:
  • Arturas Juodis
  • Vasilis Sarafidis

Abstract

A novel method-of-moments approach is proposed for the estimation of factor-augmented panel data models with endogenous regressors when T is fixed. The underlying methodology involves approximating the unobserved common factors using observed factor proxies. The resulting moment conditions are linear in the parameters. The proposed approach addresses several issues which arise with existing nonlinear estimators that are available in fixed T panels, such as local minima-related problems, a sensitivity to particular normalisation schemes, and a potential lack of global identification. We apply our approach to a large panel of households and estimate the price elasticity of urban water demand. A simulation study confirms that our approach performs well in finite samples.

Suggested Citation

  • Arturas Juodis & Vasilis Sarafidis, 2020. "A Linear Estimator for FactorAugmented Fixed-T Panels with Endogenous Regressors," Monash Econometrics and Business Statistics Working Papers 5/20, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2020-5
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp05-2020.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Artūras Juodis & Vasilis Sarafidis, 2018. "Fixed T dynamic panel data estimators with multifactor errors," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 893-929, September.
    3. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    4. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    7. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    8. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    2. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    3. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    4. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    5. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
    6. Jiaqi Xiao & Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis & Jan Ditzen, 2023. "Improved tests for Granger noncausality in panel data," Stata Journal, StataCorp LP, vol. 23(1), pages 230-242, March.
    7. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    8. Juodis, Arturas & Sarafidis, Vasilis, 2020. "Online Supplement to An Incidental Parameters Free Inference Approach for Panels with Common Shocks," MPRA Paper 104908, University Library of Munich, Germany.
    9. Qian Sun, 2023. "SOE wage premium in China: new evidence," Empirical Economics, Springer, vol. 64(3), pages 1121-1147, March.
    10. De Vos, Ignace & Everaert, Gerdie & Sarafidis, Vasilis, 2021. "A method for evaluating the rank condition for CCE estimators," MPRA Paper 112305, University Library of Munich, Germany, revised 09 Mar 2022.
    11. Matthew Harding & Carlos Lamarche & Chris Muris, 2022. "Estimation of a Factor-Augmented Linear Model with Applications Using Student Achievement Data," Papers 2203.03051, arXiv.org.
    12. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    13. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    14. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Li, Qi & Sarafidis, Vasilis & Westerlund, Joakim, 2020. "Essays in Honor of Professor Badi H Baltagi: Editorial," MPRA Paper 104751, University Library of Munich, Germany.
    16. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    17. Yan Sun & Wei Huang, 2022. "Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 93-114, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    2. Joakim Westerlund, 2020. "A cross‐section average‐based principal components approach for fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 776-785, September.
    3. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2020. "IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude," Monash Econometrics and Business Statistics Working Papers 11/20, Monash University, Department of Econometrics and Business Statistics.
    4. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    5. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    6. Matthew Harding & Carlos Lamarche & Chris Muris, 2022. "Estimation of a Factor-Augmented Linear Model with Applications Using Student Achievement Data," Papers 2203.03051, arXiv.org.
    7. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    9. G. Forchini & Bin Jiang & Bin Peng, 2015. "Common Shocks in panels with Endogenous Regressors," Monash Econometrics and Business Statistics Working Papers 8/15, Monash University, Department of Econometrics and Business Statistics.
    10. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    11. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    12. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    13. Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
    14. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    15. Ignace De Vos & Gerdie Everaert, 2016. "Bias-Corrected Common Correlated Effects Pooled Estimation In Homogeneous Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/920, Ghent University, Faculty of Economics and Business Administration.
    16. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    17. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
    18. Kazuhiko Hayakawa & Vanessa Smith & M. Hashem Pesaran, 2014. "Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with interactive effects," Cambridge Working Papers in Economics 1412, Faculty of Economics, University of Cambridge.
    19. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    20. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.

    More about this item

    Keywords

    panel data; common factors; fixed T consistency; moment conditions; urban water management;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2020-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.