IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57659.html
   My bibliography  Save this paper

Fixed T Dynamic Panel Data Estimators with Multi-Factor Errors

Author

Listed:
  • Juodis, Arturas
  • Sarafidis, Vasilis

Abstract

This paper analyzes a growing group of fixed T dynamic panel data estimators with a multi-factor error structure. We use a unified notational approach to describe these estimators and discuss their properties in terms of deviations from an underlying set of basic assumptions. Furthermore, we consider the extendability of these estimators to practical situations that may frequently arise, such as their ability to accommodate unbalanced panels. Using a large-scale simulation exercise, we consider scenarios that remain largely unexplored in the literature, albeit they are of great empirical relevance. In particular, we examine (i) the effect of the presence of weakly exogenous covariates, (ii) the effect of changing the magnitude of the correlation between the factor loadings of the dependent variable and those of the covariates, (iii) the impact of the number of moment conditions on bias and size for GMM estimators, and finally the effect of sample size. Thus, our study may serve as a useful guide to practitioners who wish to allow for multiplicative sources of unobserved heterogeneity in their model.

Suggested Citation

  • Juodis, Arturas & Sarafidis, Vasilis, 2014. "Fixed T Dynamic Panel Data Estimators with Multi-Factor Errors," MPRA Paper 57659, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57659
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57659/1/MPRA_paper_57659.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    2. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    3. Norkute, Milda, 2014. "A Monte Carlo Study of a Factor Analytical Method for Fixed-Effects Dynamic Panel Models," Working Papers 2014:7, Lund University, Department of Economics.
    4. Bai, Jushan, 2013. "Likelihood approach to dynamic panel models with interactive effects," MPRA Paper 50267, University Library of Munich, Germany.
    5. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    6. Vasilis Sarafidis & Donald Robertson, 2009. "On the impact of error cross-sectional dependence in short dynamic panel estimation," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 62-81, March.
    7. Jason Abrevaya, 2013. "The projection approach for unbalanced panel data," Econometrics Journal, Royal Economic Society, vol. 16(2), pages 161-178, June.
    8. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    9. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    10. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    11. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    12. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    13. Stephen Bond & Frank Windmeijer, 2002. "Projection estimators for autoregressive panel data models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 457-479, June.
    14. Karim M. Abadir & Jan R. Magnus, 2002. "Notation in econometrics: a proposal for a standard," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 76-90, June.
    15. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    16. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    17. Norkute, Milda, 2014. "A Monte Carlo study of a factor analytical method for fixed-effects dynamic panel models," Economics Letters, Elsevier, vol. 123(3), pages 348-351.
    18. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    19. repec:adr:anecst:y:2003:i:70:p:03 is not listed on IDEAS
    20. Jushan Bai, 2013. "Fixed‐Effects Dynamic Panel Models, a Factor Analytical Method," Econometrica, Econometric Society, vol. 81(1), pages 285-314, January.
    21. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    22. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    23. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    24. Robertson, Donald & Sarafidis, Vasilis & Westerlund, Joakim, 2014. "GMM Unit Root Inference in Generally Trending and Cross-Correlated Dynamic Panels," MPRA Paper 53419, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    2. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    3. Arturas Juodis & Vasilis Sarafidis, 2020. "A Linear Estimator for FactorAugmented Fixed-T Panels with Endogenous Regressors," Monash Econometrics and Business Statistics Working Papers 5/20, Monash University, Department of Econometrics and Business Statistics.
    4. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2020. "IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude," Monash Econometrics and Business Statistics Working Papers 11/20, Monash University, Department of Econometrics and Business Statistics.
    5. Juodis, Arturas & Sarafidis, Vasilis, 2015. "A Simple Estimator for Short Panels with Common Factors," MPRA Paper 68164, University Library of Munich, Germany.
    6. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    7. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juodis, Arturas & Sarafidis, Vasilis, 2015. "A Simple Estimator for Short Panels with Common Factors," MPRA Paper 68164, University Library of Munich, Germany.
    2. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    3. Kazuhiko Hayakawa & M. Hashem Pesaran & L. Vanessa Smith, 2014. "Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with Interactive Effects," CESifo Working Paper Series 4822, CESifo.
    4. Hsiao, Cheng, 2018. "Panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 645-673.
    5. Kazuhiko Hayakawa & Vanessa Smith & M. Hashem Pesaran, 2014. "Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with interactive effects," Cambridge Working Papers in Economics 1412, Faculty of Economics, University of Cambridge.
    6. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    7. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    8. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    9. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    10. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    11. Bai, Jushan, 2013. "Likelihood approach to dynamic panel models with interactive effects," MPRA Paper 50267, University Library of Munich, Germany.
    12. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    13. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    14. Yamagata, Takashi, 2008. "A joint serial correlation test for linear panel data models," Journal of Econometrics, Elsevier, vol. 146(1), pages 135-145, September.
    15. Williams, Benjamin, 2020. "Nonparametric identification of discrete choice models with lagged dependent variables," Journal of Econometrics, Elsevier, vol. 215(1), pages 286-304.
    16. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    17. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    18. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    19. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    20. Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.

    More about this item

    Keywords

    Dynamic Panel Data; Factor Model; Maximum Likelihood; Fixed T Consistency; Monte Carlo Simulation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57659. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.