IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/124709.html
   My bibliography  Save this paper

Forecasting economic downturns in South Africa using leading indicators and machine learning

Author

Listed:
  • Fourie, Jurgens
  • Steenkamp, Daan

Abstract

We identify South African business cycles using the algorithm of Bry-Boschan and show that the identified turning points are very similar to those from other approaches. We demonstrate that South Africa has a very volatile business cycle that makes it particularly difficult to predict turning points in the economic cycle. South Africa’s business cycle is characterised by relatively long downswings and short upswing phases with low amplitude. We find that the South African Reserve Bank (SARB)’s Leading Indicator does not substantive improve predictions of the business cycle relative to GDP itself. We assess the performance of a range of potential leading indicators in identifying economic downturns and consider whether alternative indicators and estimation approaches can produce better predictions than those of the SARB. We demonstrate that using a larger information set produces substantially better business cycle predictions, especially when using machine learning techniques. Our findings have implications for the creation of composite leading indicators, with our results suggesting that many of the macroeconomic variables considered by analysts as leading indicators do not provide good signals of GDP growth or developments in the South African business cycle.

Suggested Citation

  • Fourie, Jurgens & Steenkamp, Daan, 2025. "Forecasting economic downturns in South Africa using leading indicators and machine learning," MPRA Paper 124709, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:124709
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/124709/1/MPRA_paper_124709.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    2. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    3. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, October.
    4. J. C. Venter, 2020. "Assessing the 2013 and 2017 Business Cycle Turning Points Signalled by the SARB’s Composite Leading Business Cycle Indicator," Advances in African Economic, Social and Political Development, in: Willem H. Boshoff (ed.), Business Cycles and Structural Change in South Africa, pages 265-284, Springer.
    5. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    2. Agnello, Luca & Nerlich, Carolin, 2012. "On the severity of economic downturns: Lessons from cross-country evidence," Economics Letters, Elsevier, vol. 117(1), pages 149-155.
    3. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    4. Rachel Male, 2010. "Developing Country Business Cycles: Characterising the Cycle," Working Papers 663, Queen Mary University of London, School of Economics and Finance.
    5. Avouyi-Dovi, S. & Matheron, J., 2003. "Interactions between business cycles, stock market cycles and interest rates: the stylised facts," Financial Stability Review, Banque de France, issue 3, pages 80-99, November.
    6. Fatma Erdem & Erdal Özmen, 2015. "Exchange Rate Regimes and Business Cycles: An Empirical Investigation," Open Economies Review, Springer, vol. 26(5), pages 1041-1058, November.
    7. Veaceslav Grigoras & Irina Eusignia Stanciu, 2016. "New evidence on the (de)synchronisation of business cycles: Reshaping the European business cycle," International Economics, CEPII research center, issue 147, pages 27-52.
    8. Rozite, Kristiana & Bezemer, Dirk J. & Jacobs, Jan P.A.M., 2019. "Towards a financial cycle for the U.S., 1973–2014," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    10. Clara Martínez Toledano, 2020. "House Price Cycles, Wealth Inequality and Portfolio Reshuffling," Working Papers hal-02876979, HAL.
    11. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    12. Siklos, Pierre L., 2018. "Boom-and-bust cycles in emerging markets: How important is the exchange rate?," Journal of Macroeconomics, Elsevier, vol. 56(C), pages 172-187.
    13. Natasha Kang, Da & Marmer, Vadim, 2024. "Modeling long cycles," Journal of Econometrics, Elsevier, vol. 242(1).
    14. Siliverstovs Boriss, 2013. "Dating Business Cycles in Historical Perspective: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 661-679, October.
    15. Mercè Sala-Rios & Teresa Torres-Solé & Mariona Farré-Perdiguer, 2016. "Credit and business cycles’ relationship: evidence from Spain," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 15(3), pages 149-171, December.
    16. Petr Rozmahel & Ladislava Issever Grochová & Marek Litzman, 2014. "The Effect of Asymmetries in Fiscal Policy Conducts on Business Cycle Correlation in the EU. WWWforEurope Working Paper No. 62," WIFO Studies, WIFO, number 47249, June.
    17. Thomas Grjebine & Fabien Tripier, 2015. "Excess Finance and Growth: Don't Lose Sight of Expansions !," Working Papers 2015-31, CEPII research center.
    18. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    19. Layal Mansour-Ichrakieh, 2021. "The Impact of Israeli and Saudi Arabian Geopolitical Risks on the Lebanese Financial Market," JRFM, MDPI, vol. 14(3), pages 1-24, February.
    20. Bertrand Candelon & Jan Piplack & Stefan Straetmans, 2009. "Multivariate Business Cycle Synchronization in Small Samples," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 715-737, October.

    More about this item

    Keywords

    business cycle; forecast; leading indicator; economic downturns;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:124709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.