IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/106481.html

How Does Automation Affect Economic Growth and Income Distribution in a Two-Class Economy?

Author

Listed:
  • Sasaki, Hiroaki
  • Hagiwara, Takefumi
  • Pham, Huong
  • Fukatani, Noriki
  • Ogawa, Shogo
  • Okahara, Naoto

Abstract

This study uses a growth model with automation technology to consider two classes---workers and capitalists---and investigates how advances in automation technology affect economic growth and income distribution. In addition to the two production factors labor and traditional capital, we consider automation capital as the third production factor. We also introduce Pasinetti-type saving functions into the model to investigate how the difference between the capitalists' and workers' saving rates affect economic growth and income distribution. When the capitalists' saving rate is higher than a threshold level, per capita output exhibits endogenous growth irrespective of the workers' savings rate. In this case, the income gap between workers and capitalists widens over time. When the capitalists' saving rate is less than the threshold level, two different long-run states occur depending on the workers' saving rate: the capitalists' own automation capital share approaches a constant, and it approaches zero. In both cases, the per capita output growth is zero and the income gap between the two classes becomes constant over time.

Suggested Citation

  • Sasaki, Hiroaki & Hagiwara, Takefumi & Pham, Huong & Fukatani, Noriki & Ogawa, Shogo & Okahara, Naoto, 2021. "How Does Automation Affect Economic Growth and Income Distribution in a Two-Class Economy?," MPRA Paper 106481, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:106481
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/106481/1/MPRA_paper_106481.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    2. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, January-J.
    3. Luigi L. Pasinetti, 1962. "Rate of Profit and Income Distribution in Relation to the Rate of Economic Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(4), pages 267-279.
    4. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    5. Hiroaki Sasaki, 2022. "Growth and income distribution in an economy with dynasties and overlapping generations," Evolutionary and Institutional Economics Review, Springer, vol. 19(1), pages 215-238, April.
    6. Dalgaard, Carl-Johan & Winther Hansen, Jes, 2005. "Capital utilization and the foundations of club convergence," Economics Letters, Elsevier, vol. 87(2), pages 145-152, May.
    7. Robert J. Barro & Xavier Sala-i-Martin, 2003. "Economic Growth, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262025531, December.
    8. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    9. Prettner, Klaus, 2019. "A Note On The Implications Of Automation For Economic Growth And The Labor Share," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1294-1301, April.
    10. Lieberknecht, Philipp & Vermeulen, Philip, 2018. "Inequality and relative saving rates at the top," Working Paper Series 2204, European Central Bank.
    11. J. E. Stiglitz, 1967. "A Two-Sector Two Class Model of Economic Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(2), pages 227-238.
    12. Dario Cords & Klaus Prettner, 2022. "Technological unemployment revisited: automation in a search and matching framework [The future of work: meeting the global challenges of demographic change and automation]," Oxford Economic Papers, Oxford University Press, vol. 74(1), pages 115-135.
    13. Y. Furuno, 1970. "Convergence Time in the Samuelson-Modigliani Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(2), pages 221-232.
    14. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    15. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    16. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    17. Bohm, Volker & Kaas, Leo, 2000. "Differential savings, factor shares, and endogenous growth cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 965-980, June.
    18. Emmanuel Saez & Gabriel Zucman, 2016. "Editor's Choice Wealth Inequality in the United States since 1913: Evidence from Capitalized Income Tax Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 519-578.
    19. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338.
    20. Jeffrey D. Sachs & Seth G. Benzell & Guillermo LaGarda, 2015. "Robots: Curse or Blessing? A Basic Framework," NBER Working Papers 21091, National Bureau of Economic Research, Inc.
    21. Paul A. Samuelson & Franco Modigliani, 1966. "The Pasinetti Paradox in Neoclassical and More General Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 33(4), pages 269-301.
    22. Burkhard Heer & Andreas Irmen, 2019. "Automation, Economic Growth, and the Labor Share - A Comment on Prettner (2019) -," CESifo Working Paper Series 7730, CESifo.
    23. DeCanio, Stephen J., 2016. "Robots and humans – complements or substitutes?," Journal of Macroeconomics, Elsevier, vol. 49(C), pages 280-291.
    24. Storm, Servaas & Naastepad, C. W. M., 2012. "Macroeconomics Beyond the NAIRU," Economics Books, Harvard University Press, number 9780674062276, Spring.
    25. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    26. Thomas R. Michl & Duncan K. Foley, 2004. "Social security in a Classical growth model," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 28(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasaki, Hiroaki, 2021. "Automation Technology, Economic Growth, and Income Distribution in an Economy with Dynasties and Overlapping Generations," MPRA Paper 105446, University Library of Munich, Germany.
    2. Hiroaki Sasaki, 2022. "Growth and income distribution in an economy with dynasties and overlapping generations," Evolutionary and Institutional Economics Review, Springer, vol. 19(1), pages 215-238, April.
    3. Mr. Andrew Berg & Lahcen Bounader & Nikolay Gueorguiev & Hiroaki Miyamoto & Mr. Kenji Moriyama & Ryota Nakatani & Luis-Felipe Zanna, 2021. "For the Benefit of All: Fiscal Policies and Equity-Efficiency Trade-offs in the Age of Automation," IMF Working Papers 2021/187, International Monetary Fund.
    4. Hiroaki Sasaki, 2025. "The future of growth and distribution in an economy with automation technology," Journal of Economics, Springer, vol. 145(1), pages 1-30, June.
    5. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    6. Sasaki, Hiroaki, 2023. "Growth with automation capital and declining population," Economics Letters, Elsevier, vol. 222(C).
    7. Sasaki, Hiroaki & Sonoda, Ryunosuke, 2025. "Secular Stagnation and Income Redistribution Policy: A Long-Run Kaleckian Approach," MPRA Paper 124081, University Library of Munich, Germany.
    8. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    9. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    10. Abeliansky, Ana & Algur, Eda & Bloom, David E. & Prettner, Klaus, 2020. "The Future of Work: Challenges for Job Creation Due to Global Demographic Change and Automation," IZA Discussion Papers 12962, Institute of Labor Economics (IZA).
    11. Yingying Lu & Yixiao Zhou, 2021. "A review on the economics of artificial intelligence," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1045-1072, September.
    12. Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
    13. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.
    15. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    16. Growiec, Jakub, 2022. "Automation, Partial And Full," Macroeconomic Dynamics, Cambridge University Press, vol. 26(7), pages 1731-1755, October.
    17. Sasaki, Hiroaki & Sonoda, Ryunosuke, 2024. "Income Redistribution Policy, Growth, Inequality, and Employment: A Long-Run Kaleckian Approach," MPRA Paper 121968, University Library of Munich, Germany.
    18. Abeliansky, Ana Lucia & Prettner, Klaus, 2021. "Population growth and automation density: theory and cross-country evidence," Department of Economics Working Paper Series 315, WU Vienna University of Economics and Business.
    19. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    20. repec:rim:rimwps:19-18 is not listed on IDEAS
    21. Jakub Growiec, 2020. "What Will Drive Long-Run Growth in the Digital Age?," KAE Working Papers 2020-054, Warsaw School of Economics, Collegium of Economic Analysis.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • E25 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Aggregate Factor Income Distribution
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:106481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.