IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/accessibilityfutures.html
   My bibliography  Save this paper

Accessibility Futures

Author

Abstract

This study uses accessibility as a performance measure to evaluate a matrix of future land use and network scenarios for planning purposes. Previous research has established the coevolution of transportation and land use, demonstrated the dependence of accessibility on both, and made the case for the use of accessibility measures as a planning tool. This study builds off of these findings by demonstrating the use of accessibility-based performance measures on the Twin Cities Metropolitan Area. This choice of performance measure also allows for transit and highway networks to be compared side-by-side. A zone to zone travel time matrix was computed using SUE assignment with travel time feedback to trip distribution. A database of schedules was used on the transit networks to assign transit routes. This travel time data was joined with the land use data from each scenario to obtain the employment, population, and labor accessibility from each TAZ within specified time ranges. Tables of person- weighed accessibility were computed for 20 minutes with zone population as the weight for employment accessibility and zone employment as the weight for population and labor accessibility. The person-weighted accessibility results were then used to evaluate the planning scenarios. The results show that centralized population and employment produce the highest accessibility across all networks.

Suggested Citation

  • Paul Anderson & David Levinson & Pavithra Parthasarathi, 2011. "Accessibility Futures," Working Papers 000088, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:accessibilityfutures
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/180046
    File Function: Second version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Levinson, 1998. "Accessibility and the Journey to Work," Working Papers 199802, University of Minnesota: Nexus Research Group.
    2. Leurent, Fabien M., 1997. "Curbing the computational difficulty of the logit equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 315-326, August.
    3. David Levinson & Ajay Kumar, 1995. "A Multi-modal Trip Distribution Model," Working Papers 199503, University of Minnesota: Nexus Research Group.
    4. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    5. David Levinson & Bernadette Marion, 2010. "The City is Flatter: Changing Patterns of Job and Labor Access in Minneapolis-Saint Paul, 1995-2005," Working Papers 000077, University of Minnesota: Nexus Research Group.
    6. Arthur Huang & David Levinson, 2011. "Non-work Vehicle Trip Generation from Multi- week In-vehicle GPS Data," Working Papers 000095, University of Minnesota: Nexus Research Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavithra Parthasarathi & David Levinson, 2010. "Network Structure and Metropolitan Mobility," Working Papers 000083, University of Minnesota: Nexus Research Group.
    2. David Levinson & Arthur Huang, 2012. "A Positive Theory of Network Connectivity," Environment and Planning B, , vol. 39(2), pages 308-325, April.
    3. Manaugh, Kevin & El-Geneidy, Ahmed, 2012. "What makes travel 'local': Defining and understanding local travel behaviour," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 15-27.
    4. Gibbons, Stephen & Lyytikäinen, Teemu & Overman, Henry G. & Sanchis-Guarner, Rosa, 2019. "New road infrastructure: The effects on firms," Journal of Urban Economics, Elsevier, vol. 110(C), pages 35-50.
    5. Ahmed El-Geneidy & David Levinson, 2011. "Place Rank: Valuing Spatial Interactions," Networks and Spatial Economics, Springer, vol. 11(4), pages 643-659, December.
    6. Mondschein, Andrew & Taylor, Brian D. & Brumbaugh, Stephen, 2011. "Congestion and Accessibility: What's the Relationship," University of California Transportation Center, Working Papers qt6bh2n9wx, University of California Transportation Center.
    7. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    8. Mondschein, Andrew & Taylor, Brian D & Brumbaugh, Stephen, 2010. "Congestion And Accessibility: What’S The Relationship?," University of California Transportation Center, Working Papers qt8135b0jh, University of California Transportation Center.
    9. Ahmed El-Geneidy & David Levinson, 2007. "Mapping Accessibility Over Time," Working Papers 200709, University of Minnesota: Nexus Research Group.
    10. Feng Xie & David Levinson, 2009. "Jurisdictional Control and Network Growth," Networks and Spatial Economics, Springer, vol. 9(3), pages 459-483, September.
    11. Rosa Sanchis-Guarner, 2012. "Driving Up Wages: The Effects of Road Construction in Great Britain," SERC Discussion Papers 0120, Centre for Economic Performance, LSE.
    12. Zhu, Weihua, 2009. "Design and Development of Novel Routing Methodologies for Dynamic Roadway Navigation Systems," University of California Transportation Center, Working Papers qt8d72371n, University of California Transportation Center.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    2. Songyot Kitthamkesorn & Anthony Chen, 2024. "Stochastic User Equilibrium Model with a Bounded Perceived Travel Time," Papers 2402.18435, arXiv.org.
    3. Bekhor, Shlomo & Toledo, Tomer, 2005. "Investigating path-based solution algorithms to the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 279-295, March.
    4. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    5. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    6. Tan, Heqing & Xu, Xiangdong & Chen, Anthony, 2024. "On endogenously distinguishing inactive paths in stochastic user equilibrium: A convex programming approach with a truncated path choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    7. Zhou, Bojian & Li, Xuhong & He, Jie, 2014. "Exploring trust region method for the solution of logit-based stochastic user equilibrium problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 46-57.
    8. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    9. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
    10. Wei, Chong & Asakura, Yasuo & Iryo, Takamasa, 2014. "Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 45-57.
    11. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    12. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    13. Cui, Boer & Boisjoly, Geneviève & El-Geneidy, Ahmed & Levinson, David, 2019. "Accessibility and the journey to work through the lens of equity," Journal of Transport Geography, Elsevier, vol. 74(C), pages 269-277.
    14. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    15. Singer, Matan E. & Cohen-Zada, Aviv L. & Martens, Karel, 2022. "Core versus periphery: Examining the spatial patterns of insufficient accessibility in U.S. metropolitan areas," Journal of Transport Geography, Elsevier, vol. 100(C).
    16. Clark, William A. V. & Huang, Youqin & Withers, Suzanne, 2003. "Does commuting distance matter?: Commuting tolerance and residential change," Regional Science and Urban Economics, Elsevier, vol. 33(2), pages 199-221, March.
    17. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    18. Puente-Mejia, Bernardo & Palacios-Argüello, Laura & Suárez-Núñez, Carlos & Gonzalez-Feliu, Jesus, 2020. "Freight trip generation modeling and data collection processes in Latin American cities. Modeling framework for Quito and generalization issues," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 226-241.
    19. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    20. Jen-Jia Lin & Chi-Hau Chen & Tsung-Yu Hsieh, 2016. "Job accessibility and ethnic minority employment in urban and rural areas in Taiwan," Papers in Regional Science, Wiley Blackwell, vol. 95(2), pages 363-382, June.

    More about this item

    Keywords

    Accessibility; Forecasting; Travel Demand; Scenarios; Trends; Transportation; Land Use.;
    All these keywords.

    JEL classification:

    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • R52 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Land Use and Other Regulations
    • R53 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Public Facility Location Analysis; Public Investment and Capital Stock
    • H11 - Public Economics - - Structure and Scope of Government - - - Structure and Scope of Government

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:accessibilityfutures. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.