IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/18144.html

A Precautionary Tale of Uncertain Tail Fattening

Author

Listed:
  • Martin L. Weitzman

Abstract

Suppose that there is a probability density function for how bad things might get, but that the overall rate at which this probability density function slims down to approach zero in the tail is uncertain. The paper shows how a basic precautionary principle of tail fattening could then apply. The worse is the contemplated damage, the more should a decision maker consider the bad tail to be among the relatively fatter-tailed possibilities. A rough numerical example is applied to the uncertain tail distribution of climate sensitivity.

Suggested Citation

  • Martin L. Weitzman, 2012. "A Precautionary Tale of Uncertain Tail Fattening," NBER Working Papers 18144, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:18144
    Note: EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w18144.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Johanna Etner & Meglena Jeleva & Jean‐Marc Tallon, 2012. "Decision Theory Under Ambiguity," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 234-270, April.
    2. Millner, Antony & Dietz, Simon & Heal, Geoffrey, 2010. "Ambiguity and climate policy," LSE Research Online Documents on Economics 37595, London School of Economics and Political Science, LSE Library.
    3. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    4. Claude HENRY & Marc HENRY, 2002. "Formalization and Applications of the Precuationary Principle," LIDAM Discussion Papers IRES 2002009, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    5. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    6. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    7. repec:hal:pseose:halshs-00643580 is not listed on IDEAS
    8. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans-Jürgen Nantke & Alfred Endres & Frederik Schaff & Till Requate & Susanne Dröge, 2013. "Scheitern der Reform des Emissionshandels: Verliert Europa die Vorreiterrolle in der Klimapolitik?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(12), pages 03-15, June.
    2. Max Gillman & Michal Kejak & Michal Pakoš, 2015. "Learning about Rare Disasters: Implications For Consumption and Asset Prices," Review of Finance, European Finance Association, vol. 19(3), pages 1053-1104.
    3. Max Gillman & Michal Kejak & Michal Pakos, 2014. "Learning about Disaster Risk: Joint Implications for Consumption and Asset Prices," CERGE-EI Working Papers wp507, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    4. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    5. Lopez, Ramon E. & Pastén, Roberto & Gutiérrez Cubillos, Pablo, 2022. "Climate change in times of economic uncertainty: A perverse tragedy of the commons?," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 209-225.
    6. Edward B. Barbier & Joanne C. Burgess, 2019. "Scarcity and Safe Operating Spaces: The Example of Natural Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1077-1099, November.
    7. Sturla F. Kvamsdal & Ivan Belik & Arnt Ove Hopland & Yuanhao Li, 2021. "A Machine Learning Analysis of the Recent Environmental and Resource Economics Literature," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(1), pages 93-115, May.
    8. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    9. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brock, W. A. & Xepapadeas, A., "undated". "Modeling Coupled Climate, Ecosystems, and Economic Systems," Climate Change and Sustainable Development 206837, Fondazione Eni Enrico Mattei (FEEM).
    2. Bond, Craig A. & Iverson, Terrence, 2011. "Modeling Information in Environmental Decision-Making," Western Economics Forum, Western Agricultural Economics Association, vol. 10(2), pages 1-17.
    3. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    4. Dietz, Simon, 2012. "The treatment of risk and uncertainty in the US social cost of carbon for regulatory impact analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-12.
    5. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    6. Stern, Nicholas, 2014. "Ethics, equity and the economics of climate change paper 2: economics and politics," LSE Research Online Documents on Economics 62704, London School of Economics and Political Science, LSE Library.
    7. Gillingham, Kenneth & Nordhaus, William & Anthoff, David & Bosetti, Valentina & McJeon, Haewon & Blanford, Geoffrey & Christensen, Peter & Reilly, John & Sztorc, Paul, "undated". "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," MITP: Mitigation, Innovation and Transformation Pathways 232219, Fondazione Eni Enrico Mattei (FEEM).
    8. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    9. Kopits, Elizabeth & Marten, Alex L. & Wolverton, Ann, 2013. "Moving Forward with Incorporating “Catastrophic” Climate Change into Policy Analysis," National Center for Environmental Economics-NCEE Working Papers 280911, United States Environmental Protection Agency (EPA).
    10. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    11. Fei Teng & Frank Jotzo, 2014. "Reaping the Economic Benefits of Decarbonization for China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 22(5), pages 37-54, September.
    12. Soheil Shayegh & Valerie Thomas, 2015. "Adaptive stochastic integrated assessment modeling of optimal greenhouse gas emission reductions," Climatic Change, Springer, vol. 128(1), pages 1-15, January.
    13. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    14. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    15. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    16. Wonjun Chang & Thomas F. Rutherford, 2017. "Catastrophic Thresholds, Bayesian Learning And The Robustness Of Climate Policy Recommendations," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-23, November.
    17. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    18. Stergios Athanassoglou & Anastasios Xepapadeas, 2011. "Pollution Control: When, and How, to be Precautious," Working Papers 2011.18, Fondazione Eni Enrico Mattei.
    19. Athanasios Yannacopoulos & Anastasios Xepapadeas, "undated". "Climate Change Policy under Spatially Structured Ambiguity: Hot Spots and the Precautionary Principle," DEOS Working Papers 1332, Athens University of Economics and Business.
    20. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.

    More about this item

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.