IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/15539.html
   My bibliography  Save this paper

Estimation of Treatment Effects Without an Exclusion Restriction: with an Application to the Analysis of the School Breakfast Program

Author

Listed:
  • Daniel L. Millimet
  • Rusty Tchernis

Abstract

While the rise in childhood obesity is clear, the policy ramifications are not. School nutrition programs such as the School Breakfast Program (SBP) have come under much scrutiny. However, the lack of experimental evidence, combined with non-random selection into these programs, makes identification of the causal effects of such programs difficult. In the case of the SBP, this difficulty is exacerbated by the apparent lack of exclusion restrictions. Here, we compare via Monte Carlo study several existing estimators that do not rely on exclusion restrictions for identification. In addition, we propose two new estimation strategies. Simulations illustrate the usefulness of our new estimators, as well as provide applied researchers several practical guidelines when analyzing the causal effects of binary treatments. More importantly, we find consistent evidence of a beneficial causal effect of SBP participation on childhood obesity when applying estimators designed to circumvent selection on unobservables.

Suggested Citation

  • Daniel L. Millimet & Rusty Tchernis, 2009. "Estimation of Treatment Effects Without an Exclusion Restriction: with an Application to the Analysis of the School Breakfast Program," NBER Working Papers 15539, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:15539
    Note: HE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w15539.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    3. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    4. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    5. Jayanta Bhattacharya & Janet Currie & Steven J. Haider, 2006. "Breakfast of Champions?: The School Breakfast Program and the Nutrition of Children and Families," Journal of Human Resources, University of Wisconsin Press, vol. 41(3).
    6. Black, Dan A. & Smith, J.A.Jeffrey A., 2004. "How robust is the evidence on the effects of college quality? Evidence from matching," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 99-124.
    7. Alberto Abadie & Guido W. Imbens, 2016. "Matching on the Estimated Propensity Score," Econometrica, Econometric Society, vol. 84, pages 781-807, March.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    9. Daniel L. Millimet & Rusty Tchernis & Muna Husain, 2010. "School Nutrition Programs and the Incidence of Childhood Obesity," Journal of Human Resources, University of Wisconsin Press, vol. 45(3).
    10. Roger Klein & Francis Vella, 2009. "A semiparametric model for binary response and continuous outcomes under index heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 735-762.
    11. Millimet, Daniel L. & Tchernis, Rusty, 2009. "On the Specification of Propensity Scores, With Applications to the Analysis of Trade Policies," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 397-415.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    14. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    15. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    16. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    17. Sara Bleich & David Cutler & Christopher Murray & Alyce Adams, 2007. "Why Is The Developed World Obese?," NBER Working Papers 12954, National Bureau of Economic Research, Inc.
    18. Millimet, Daniel L. & Tchernis, Rusty, 2009. "On the Specification of Propensity Scores, With Applications to the Analysis of Trade Policies," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 397-415.
    19. Odelia Rosin, 2008. "The Economic Causes Of Obesity: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 617-647, September.
    20. Guthrie, Joanne F. & Newman, Constance & Ralston, Katherine L., 2009. "USDA School Meal Programs Face New Challenges," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 24(3), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • J13 - Labor and Demographic Economics - - Demographic Economics - - - Fertility; Family Planning; Child Care; Children; Youth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:15539. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.