IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Figure Skating and the Theory of Social Choice

Listed author(s):
  • Truchon, Michel


The rule used by the United States Figure Skating Association and the International Skating Union, hereafter the ISU Rule, to aggregate individual rankings of the skaters by the judges into a final ranking, is an interesting example of a social welfare function. This rule is examined thoroughly in this paper from the perspective of the modern theory of social choice. The ISU Rule is based on four different criteria, the first being median ranks of the skaters. Although the median rank criterion is a majority principle, it is completely at odd with another majority principle introduced in this paper and called the Extended Condorcet Criterion. It may be translated as follows: If a competitor is ranked consistently ahead of another competitor by an absolute majority of judges, he should be ahead in the final ranking. Consistency here refers to the absence of a cycle in the majority relation involving these two skaters. There are actually many cycles in the data of four Olympic Games that were examined. The Kemeny rule may be used to break these cycles. This is not only consistent with the Extended Condorcet Criterion but the latter also proves useful in finding Kemeny orders over large sets of alternatives, by allowing decomposition of these orders. The ISU, the Kemeny, the Borda rankings and the ranking according to the raw marks are then compared on 24 olympic competitions. The four rankings disagree in many instances. Finally it is shown that the ISU Rule may be very sensitive to small errors on the part of the judges and that it does not escape the numerous theorems on manipulation. Some considerations are also offered as to whether the ISU Rule is more or less prone to manipulation than others. La règle utilisée par la United States Figure Skating Association et l'International Skating Union, ci-après la règle de l'ISU, pour agréger les classements des patineurs par chacun des juges en un classement final, est un exemple intéressant de fonction de bien-être social. Cette règle est examinée en détail dans cet article du point de vue de la théorie moderne des choix sociaux. Cette règle repose sur quatre critères, le premier étant le rang médian des patineurs. Bien que ce critère soit en fait un principe majoritaire, il va à l'encontre d'un autre principe majoritaire introduit ici et appelé le Critère de Condorcet généralisé. Il peut être traduit ainsi: Si un compétiteur est classé avant un autre de manière cohérente par une majorité de juges, il devrait l'être dans le classement final. La cohérence réfère à l'absence de cycle dans la relation majoritaire impliquant ces deux compétiteurs. De fait, plusieurs cycles ont été rencontrés dans les données de quatre Jeux olympiques qui ont été examinées. La règle de Kemeny peut être utilisée pour briser ces cycles. Non seulement cette règle est-elle cohérente avec le Critère de Condorcet généralisé mais ce dernier s'avère utile dans la recherche d'ordres de Kemeny sur un grand nombre d'alternatives, en permettant la décomposition de ces ordres. Les classements des patineurs selon les règles de l'ISU, de Kemeny, de Borda et selon les notes brutes sont ensuite comparés pour 24 compétitions olympiques. Les quatre classements sont souvent différents. Finalement, il est démontré que la règle de l'ISU peut être très sensible à de petites erreurs de la part des juges et qu'elle n'échappe pas aux nombreux théorèmes d'impossibilité sur la manipulation. Quelques remarques sont aussi offertes sur la plus ou moins grande susceptibilité de cette règle à la manipulation par rapport à d'autres règles.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université Laval - Département d'économique in its series Cahiers de recherche with number 9814.

in new window

Date of creation: 1998
Handle: RePEc:lvl:laeccr:9814
Contact details of provider: Postal:
Pavillon J.A. De Sève, Québec, Québec, G1K 7P4

Phone: (418) 656-5122
Fax: (418) 656-2707
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Le Breton, Michel & Truchon, Michel, 1997. "A Borda measure for social choice functions," Mathematical Social Sciences, Elsevier, vol. 34(3), pages 249-272, October.
  2. Truchon, Michel, 1998. "An Extension of the Concordet Criterion and Kemeny Orders," Cahiers de recherche 9813, Université Laval - Département d'économique.
  3. Barthelemy, J. P. & Guenoche, A. & Hudry, O., 1989. "Median linear orders: Heuristics and a branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 42(3), pages 313-325, October.
  4. Young, H. P., 1974. "An axiomatization of Borda's rule," Journal of Economic Theory, Elsevier, vol. 9(1), pages 43-52, September.
  5. Muller, Eitan & Satterthwaite, Mark A., 1977. "The equivalence of strong positive association and strategy-proofness," Journal of Economic Theory, Elsevier, vol. 14(2), pages 412-418, April.
  6. Jonathan Levin & Barry Nalebuff, 1995. "An Introduction to Vote-Counting Schemes," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 3-26, Winter.
  7. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
  8. Saari, Donald G, 1990. "Susceptibility to Manipulation," Public Choice, Springer, vol. 64(1), pages 21-41, January.
  9. I. Good, 1971. "A note on condorcet sets," Public Choice, Springer, vol. 10(1), pages 97-101, March.
  10. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9814. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.