IDEAS home Printed from https://ideas.repec.org/p/lvl/laeccr/0211.html
   My bibliography  Save this paper

Maximum Likelihood Approach to Vote Aggregation with Variable Probabilities

Author

Listed:
  • Drissi, Mohamed
  • Truchon, Michel

Abstract

Condorcet (1785) initiated the statistical approach to vote aggregation. Two centuries later, Young (1988) showed that a correct application of the maximum likelihood principle leads to the selection of rankings called Kemeny orders, which have the minimal total number of disagreements with those of the voters. The Condorcet-Kemeny-Yoiung approach is based on the assumption that the voters have the same probability of comparing correctly two alternatives and that this probability is the same for any pair of alternatives. We relax the second part of this assumption by letting the probability of comparing correctly two alternatives be increasing with the distance between two alternatives in the allegedly true ranking. This leads to a rule in which the majority in favor of one alternative against another one is given a larger weight the larger the distance between the two alternatives in the true ranking, i.e. the larger the probability that the voters compare them correctly. This rule is not Condorcet consistent. Thus, it may be different from the Kemeny rule. Yet, it is anonymous, neutral, and paretian. However, contrary to the Kemeny rule, it does not satisfy Young and Levenglick (1978)'s local independence of irrelevant alternatives. Condorcet also hinted that the Condorcet winner or the top alternative in the Condorcet ranking is not necessarily most likely to be the best. Young confirms that indeed with a constant probability close to 1/2, this alternative is the Borda winner while it is the alternative whose smallest majority is the largest when the probability is close to 1. We extend his analysis to the case of variable probabilities. Young's result implies that the Kemeny rule does not necessarily select the alternative most likely to be the best. A natural question that comes to mind is whether the rule obtained with variable probabilities does better than the Kemeny rule in this respect. It appears that this performance imporves with the rate at which the probability increases.

Suggested Citation

  • Drissi, Mohamed & Truchon, Michel, 2002. "Maximum Likelihood Approach to Vote Aggregation with Variable Probabilities," Cahiers de recherche 0211, Université Laval - Département d'économique.
  • Handle: RePEc:lvl:laeccr:0211
    as

    Download full text from publisher

    File URL: http://www.ecn.ulaval.ca/w3/recherche/cahiers/2002/0211.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ladha, Krishna K., 1995. "Information pooling through majority-rule voting: Condorcet's jury theorem with correlated votes," Journal of Economic Behavior & Organization, Elsevier, vol. 26(3), pages 353-372, May.
    2. Truchon, Michel, 1998. "An Extension of the Concordet Criterion and Kemeny Orders," Cahiers de recherche 9813, Université Laval - Département d'économique.
    3. Berg, Sven, 1994. "Evaluation of some weighted majority decision rules under dependent voting," Mathematical Social Sciences, Elsevier, vol. 28(2), pages 71-83, October.
    4. Donald G. Saari & Vincent R. Merlin, 2000. "A geometric examination of Kemeny's rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(3), pages 403-438.
    5. Wit, Jorgen, 1998. "Rational Choice and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 22(2), pages 364-376, February.
    6. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
    7. Truchon, M., 1998. "Figure Skating and the Theory of Social Choice," Papers 9814, Laval - Recherche en Politique Economique.
    8. Nitzan, Shmuel & Paroush, Jacob, 1982. "Optimal Decision Rules in Uncertain Dichotomous Choice Situations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 289-297, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcus Pivato, 2013. "Voting rules as statistical estimators," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 581-630, February.
    2. Truchon, Michel & Gordon, Stephen, 2009. "Statistical comparison of aggregation rules for votes," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 199-212, March.
    3. Conitzer, Vincent, 2012. "Should social network structure be taken into account in elections?," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 100-102.
    4. Marcus Hagedorn & Tzuo Hann Law & Iourii Manovskii, 2017. "Identifying Equilibrium Models of Labor Market Sorting," Econometrica, Econometric Society, vol. 85, pages 29-65, January.
    5. Truchon, Michel, 2008. "Borda and the maximum likelihood approach to vote aggregation," Mathematical Social Sciences, Elsevier, vol. 55(1), pages 96-102, January.
    6. Truchon, Michel, 2004. "Aggregation of Rankings in Figure Skating," Cahiers de recherche 0402, Université Laval - Département d'économique.
    7. Jean-François Laslier, 2009. "In Silico Voting Experiments," Working Papers hal-00390376, HAL.
    8. T. Tideman & Florenz Plassmann, 2014. "Which voting rule is most likely to choose the “best” candidate?," Public Choice, Springer, vol. 158(3), pages 331-357, March.
    9. Yuta Nakamura, 2015. "Maximum Likelihood Social Choice Rule," The Japanese Economic Review, Japanese Economic Association, vol. 66(2), pages 271-284, June.

    More about this item

    Keywords

    Vote Aggregation; Kemeny Rule; Maximum Likelihood; Variable Probabilities;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:0211. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis). General contact details of provider: http://edirc.repec.org/data/delvlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.