IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v87y2020icp128-133.html
   My bibliography  Save this article

On the merit of non-specialization in the context of majority voting

Author

Listed:
  • Baharad, Eyal
  • Ben-Yashar, Ruth
  • Patal, Tal

Abstract

This study shows that independence between voters’ skills and states of nature improves the majority voting efficiency relative to the case when such independence does not exist. This implies that specialization (state of nature wise) is not advantageous under the simple majority rule.

Suggested Citation

  • Baharad, Eyal & Ben-Yashar, Ruth & Patal, Tal, 2020. "On the merit of non-specialization in the context of majority voting," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 128-133.
  • Handle: RePEc:eee:mateco:v:87:y:2020:i:c:p:128-133
    DOI: 10.1016/j.jmateco.2020.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406820300112
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard Grofman, 1975. "A comment on ‘democratic theory: A preliminary mathematical model.’," Public Choice, Springer, vol. 21(1), pages 99-103, March.
    2. Ben-Yashar, Ruth C & Nitzan, Shmuel I, 1997. "The Optimal Decision Rule for Fixed-Size Committees in Dichotomous Choice Situations: The General Result," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 175-186, February.
    3. Ladha, Krishna K., 1995. "Information pooling through majority-rule voting: Condorcet's jury theorem with correlated votes," Journal of Economic Behavior & Organization, Elsevier, vol. 26(3), pages 353-372, May.
    4. Ben-Yashar, Ruth & Danziger, Leif, 2011. "Symmetric and asymmetric committees," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 440-447.
    5. Ruth Ben-Yashar & Mor Zahavi, 2011. "The Condorcet jury theorem and extension of the franchise with rationally ignorant voters," Public Choice, Springer, vol. 148(3), pages 435-443, September.
    6. Ruth Ben-Yashar, 2014. "The generalized homogeneity assumption and the Condorcet jury theorem," Theory and Decision, Springer, vol. 77(2), pages 237-241, August.
    7. Owen, Guillermo & Grofman, Bernard & Feld, Scott L., 1989. "Proving a distribution-free generalization of the Condorcet Jury Theorem," Mathematical Social Sciences, Elsevier, vol. 17(1), pages 1-16, February.
    8. Sah, Raaj Kumar & Stiglitz, Joseph E, 1986. "The Architecture of Economic Systems: Hierarchies and Polyarchies," American Economic Review, American Economic Association, vol. 76(4), pages 716-727, September.
    9. Daniel Berend & Luba Sapir, 2005. "Monotonicity in Condorcet Jury Theorem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(1), pages 83-92, August.
    10. Ruth Ben-Yashar & Jacob Paroush, 2000. "A nonasymptotic Condorcet jury theorem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(2), pages 189-199.
    11. Young, H. P., 1988. "Condorcet's Theory of Voting," American Political Science Review, Cambridge University Press, vol. 82(4), pages 1231-1244, December.
    12. Ruth Ben-Yashar & Shmuel Nitzan, 2017. "Is diversity in capabilities desirable when adding decision makers?," Theory and Decision, Springer, vol. 82(3), pages 395-402, March.
    13. Scott Feld & Bernard Grofman, 1984. "The accuracy of group majority decisions in groups with added members," Public Choice, Springer, vol. 42(3), pages 273-285, January.
    14. Sah, Raaj Kumar & Stiglitz, Joseph E, 1988. "Committees, Hierarchies and Polyarchies," Economic Journal, Royal Economic Society, vol. 98(391), pages 451-470, June.
    15. Ben-Yashar, Ruth & Danziger, Leif, 2011. "Symmetric and asymmetric committees," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 440-447.
    16. Daniel Berend & Jacob Paroush, 1998. "When is Condorcet's Jury Theorem valid?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(4), pages 481-488.
    17. Nitzan, Shmuel & Paroush, Jacob, 1982. "Optimal Decision Rules in Uncertain Dichotomous Choice Situations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 289-297, June.
    18. Eyal Baharad & Ruth Ben-Yashar, 2009. "The robustness of the optimal weighted majority rule to probability distortion," Public Choice, Springer, vol. 139(1), pages 53-59, April.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:87:y:2020:i:c:p:128-133. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.