IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v87y2020icp128-133.html
   My bibliography  Save this article

On the merit of non-specialization in the context of majority voting

Author

Listed:
  • Baharad, Eyal
  • Ben-Yashar, Ruth
  • Patal, Tal

Abstract

This study shows that independence between voters’ skills and states of nature improves the majority voting efficiency relative to the case when such independence does not exist. This implies that specialization (state of nature wise) is not advantageous under the simple majority rule.

Suggested Citation

  • Baharad, Eyal & Ben-Yashar, Ruth & Patal, Tal, 2020. "On the merit of non-specialization in the context of majority voting," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 128-133.
  • Handle: RePEc:eee:mateco:v:87:y:2020:i:c:p:128-133
    DOI: 10.1016/j.jmateco.2020.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406820300112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2020.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sah, Raaj Kumar & Stiglitz, Joseph E, 1986. "The Architecture of Economic Systems: Hierarchies and Polyarchies," American Economic Review, American Economic Association, vol. 76(4), pages 716-727, September.
    2. Ruth Ben-Yashar & Shmuel Nitzan, 2017. "Is diversity in capabilities desirable when adding decision makers?," Theory and Decision, Springer, vol. 82(3), pages 395-402, March.
    3. Sah, Raaj Kumar & Stiglitz, Joseph E, 1988. "Committees, Hierarchies and Polyarchies," Economic Journal, Royal Economic Society, vol. 98(391), pages 451-470, June.
    4. Ben-Yashar, Ruth & Danziger, Leif, 2011. "Symmetric and asymmetric committees," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 440-447.
    5. Daniel Berend & Jacob Paroush, 1998. "When is Condorcet's Jury Theorem valid?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(4), pages 481-488.
    6. Nitzan, Shmuel & Paroush, Jacob, 1982. "Optimal Decision Rules in Uncertain Dichotomous Choice Situations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 289-297, June.
    7. Eyal Baharad & Ruth Ben-Yashar, 2009. "The robustness of the optimal weighted majority rule to probability distortion," Public Choice, Springer, vol. 139(1), pages 53-59, April.
    8. Bernard Grofman, 1975. "A comment on ‘democratic theory: A preliminary mathematical model.’," Public Choice, Springer, vol. 21(1), pages 99-103, March.
    9. Ruth Ben-Yashar & Mor Zahavi, 2011. "The Condorcet jury theorem and extension of the franchise with rationally ignorant voters," Public Choice, Springer, vol. 148(3), pages 435-443, September.
    10. Young, H. P., 1988. "Condorcet's Theory of Voting," American Political Science Review, Cambridge University Press, vol. 82(4), pages 1231-1244, December.
    11. Ben-Yashar, Ruth C & Nitzan, Shmuel I, 1997. "The Optimal Decision Rule for Fixed-Size Committees in Dichotomous Choice Situations: The General Result," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 175-186, February.
    12. Ladha, Krishna K., 1995. "Information pooling through majority-rule voting: Condorcet's jury theorem with correlated votes," Journal of Economic Behavior & Organization, Elsevier, vol. 26(3), pages 353-372, May.
    13. Ruth Ben-Yashar, 2014. "The generalized homogeneity assumption and the Condorcet jury theorem," Theory and Decision, Springer, vol. 77(2), pages 237-241, August.
    14. Owen, Guillermo & Grofman, Bernard & Feld, Scott L., 1989. "Proving a distribution-free generalization of the Condorcet Jury Theorem," Mathematical Social Sciences, Elsevier, vol. 17(1), pages 1-16, February.
    15. Daniel Berend & Luba Sapir, 2005. "Monotonicity in Condorcet Jury Theorem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(1), pages 83-92, August.
    16. Ruth Ben-Yashar & Jacob Paroush, 2000. "A nonasymptotic Condorcet jury theorem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(2), pages 189-199.
    17. Scott Feld & Bernard Grofman, 1984. "The accuracy of group majority decisions in groups with added members," Public Choice, Springer, vol. 42(3), pages 273-285, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruth Ben-Yashar, 2023. "An application of simple majority rule to a group with an even number of voters," Theory and Decision, Springer, vol. 94(1), pages 83-95, January.
    2. Ruth Ben-Yashar & Shmuel Nitzan, 2017. "Is diversity in capabilities desirable when adding decision makers?," Theory and Decision, Springer, vol. 82(3), pages 395-402, March.
    3. Ruth Ben-Yashar, 2014. "The generalized homogeneity assumption and the Condorcet jury theorem," Theory and Decision, Springer, vol. 77(2), pages 237-241, August.
    4. Eyal Baharad & Ruth Ben-Yashar & Shmuel Nitzan, 2020. "Variable Competence and Collective Performance: Unanimity Versus Simple Majority Rule," Group Decision and Negotiation, Springer, vol. 29(1), pages 157-167, February.
    5. BEN-YASHAR, Ruth & NITZAN, Shmuel, 2016. "Is Diversity in Capabilities Desirable When Adding Decision Makers?," Discussion paper series HIAS-E-21, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    6. Eyal Baharad & Ruth Ben-Yashar, 2021. "Judgment Aggregation by a Boundedly Rational Decision-Maker," Group Decision and Negotiation, Springer, vol. 30(4), pages 903-914, August.
    7. Ruth Ben-Yashar & Shmuel Nitzan, 2017. "Are two better than one? A note," Public Choice, Springer, vol. 171(3), pages 323-329, June.
    8. Ruth Ben-Yashar & Winston Koh & Shmuel Nitzan, 2012. "Is specialization desirable in committee decision making?," Theory and Decision, Springer, vol. 72(3), pages 341-357, March.
    9. Ruth Ben‐Yashar & Miriam Krausz & Shmuel Nitzan, 2018. "Government loan guarantees and the credit decision‐making structure," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(2), pages 607-625, May.
    10. BAHARAD, Eyal & BEN-YASHAR, Ruth & NITZAN, Shmuel, 2018. "Variable Competence and Collective Performance: Unanimity vs. Simple Majority Rule," Discussion paper series HIAS-E-80, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    11. Malik Magdon-Ismail & Lirong Xia, 2018. "A Mathematical Model for Optimal Decisions in a Representative Democracy," Papers 1807.06157, arXiv.org.
    12. Ruth Ben-Yashar & Mor Zahavi, 2011. "The Condorcet jury theorem and extension of the franchise with rationally ignorant voters," Public Choice, Springer, vol. 148(3), pages 435-443, September.
    13. Eyal Baharad & Jacob Goldberger & Moshe Koppel & Shmuel Nitzan, 2012. "Beyond Condorcet: optimal aggregation rules using voting records," Theory and Decision, Springer, vol. 72(1), pages 113-130, January.
    14. Alexander Lundberg, 2020. "The importance of expertise in group decisions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(3), pages 495-521, October.
    15. Sapir, Luba, 2005. "Generalized means of jurors' competencies and marginal changes of jury's size," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 83-101, July.
    16. Eyal Baharad & Ruth Ben-Yashar, 2009. "The robustness of the optimal weighted majority rule to probability distortion," Public Choice, Springer, vol. 139(1), pages 53-59, April.
    17. Berg, Sven & Paroush, Jacob, 1998. "Collective decision making in hierarchies," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 233-244, May.
    18. Bezalel Peleg & Shmuel Zamir, 2012. "Extending the Condorcet Jury Theorem to a general dependent jury," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(1), pages 91-125, June.
    19. Ben Abramowitz & Omer Lev & Nicholas Mattei, 2022. "Who Reviews The Reviewers? A Multi-Level Jury Problem," Papers 2211.08494, arXiv.org, revised Dec 2023.
    20. Ben-Yashar, Ruth & Danziger, Leif, 2016. "The unanimity rule and extremely asymmetric committees," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 107-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:87:y:2020:i:c:p:128-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.