IDEAS home Printed from https://ideas.repec.org/p/lvl/lacicr/0414.html
   My bibliography  Save this paper

Aggregation of Rankings in Figure Skating

Author

Listed:
  • Michel Truchon

Abstract

We scrutinize and compare, from the perspective of modern theory of social choice, two rules that have been used to rank competitors in Figure Skating for the past decades. The firs rule has been in use at least from 1982 until 1998, when it was replaced by a new one. We also compare these two rules with the Borda and the Kemeny rules. The four rules are illustrated with examples and with the data of 30 Olympic competitions. The comparisons show that the choice of a rule can have a real impact on the rankings. In these data, we found as many as 19 cycles of the majority relation, involving as many as nine skaters. In this context, the Kemeny rule appears as a natural extension of the Condorcet rule. As a side result, we show that the Copeland rule can be used to partition the skaters in such a way that it suffice to find Kemeny rankings within subsets of the partition that are not singletons and then, to juxtapose these rankings to get a complete Kemeny ranking. We also propose the concept of the mean Kemeny ranking, which when it exists, may obviate the multiplicity of Kemeny rankings. Finally, the fours rules are examined in terms of their manipulability. It appears that the new rule used in Figure Skating may be more difficult to manipulate than the previous one but less so than the Kemeny rule.

Suggested Citation

  • Michel Truchon, 2004. "Aggregation of Rankings in Figure Skating," Cahiers de recherche 0414, CIRPEE.
  • Handle: RePEc:lvl:lacicr:0414
    as

    Download full text from publisher

    File URL: http://www.cirpee.org/fileadmin/documents/Cahiers_2004/CIRPEE04-14.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barthelemy, J. P. & Guenoche, A. & Hudry, O., 1989. "Median linear orders: Heuristics and a branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 42(3), pages 313-325, October.
    2. Muller, Eitan & Satterthwaite, Mark A., 1977. "The equivalence of strong positive association and strategy-proofness," Journal of Economic Theory, Elsevier, vol. 14(2), pages 412-418, April.
    3. Le Breton, M. & Truchon, M., 1993. "Acyclicity and the Dispersion of the Veto Power," Papers 9317, Laval - Recherche en Politique Economique.
    4. Mohamed Drissi-Bakhkhat & Michel Truchon, 2004. "Maximum likelihood approach to vote aggregation with variable probabilities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 161-185, October.
    5. Jonathan Levin & Barry Nalebuff, 1995. "An Introduction to Vote-Counting Schemes," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 3-26, Winter.
    6. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
    7. Saari, Donald G, 1990. "Susceptibility to Manipulation," Public Choice, Springer, vol. 64(1), pages 21-41, January.
    8. I. Good, 1971. "A note on condorcet sets," Public Choice, Springer, vol. 10(1), pages 97-101, March.
    9. Merlin, V. & Tataru, M. & Valognes, F., 2000. "On the probability that all decision rules select the same winner," Journal of Mathematical Economics, Elsevier, vol. 33(2), pages 183-207, March.
    10. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truchon, Michel & Gordon, Stephen, 2009. "Statistical comparison of aggregation rules for votes," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 199-212, March.
    2. Truchon, Michel, 2008. "Borda and the maximum likelihood approach to vote aggregation," Mathematical Social Sciences, Elsevier, vol. 55(1), pages 96-102, January.
    3. Stephen Gordon & Michel Truchon, 2008. "Social choice, optimal inference and figure skating," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(2), pages 265-284, February.
    4. Bargagliotti, Anna E., 2009. "Aggregation and decision making using ranked data," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 354-366, November.
    5. Michel Truchon, 2005. "Aggregation of Rankings: a Brief Review of Distance-Based Rules," Cahiers de recherche 0534, CIRPEE.
    6. Boudreau, James & Ehrlich, Justin & Sanders, Shane & Winn, Adam, 2014. "Social choice violations in rank sum scoring: A formalization of conditions and corrective probability computations," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 20-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truchon, Michel, 1998. "Figure Skating and the Theory of Social Choice," Cahiers de recherche 9814, Université Laval - Département d'économique.
    2. Truchon, Michel, 1999. "La démocratie : oui, mais laquelle?," L'Actualité Economique, Société Canadienne de Science Economique, vol. 75(1), pages 189-214, mars-juin.
    3. Le Breton, Michel & Truchon, Michel, 1997. "A Borda measure for social choice functions," Mathematical Social Sciences, Elsevier, vol. 34(3), pages 249-272, October.
    4. Green-Armytage, James, 2011. "Strategic voting and nomination," MPRA Paper 32200, University Library of Munich, Germany.
    5. Felix Brandt, 2015. "Set-monotonicity implies Kelly-strategyproofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 793-804, December.
    6. Michel Truchon, 2002. "Choix social et comités de sélection : le cas du patinage artistique," CIRANO Burgundy Reports 2002rb-02, CIRANO.
    7. John C. McCabe-Dansted & Arkadii Slinko, 2006. "Exploratory Analysis of Similarities Between Social Choice Rules," Group Decision and Negotiation, Springer, vol. 15(1), pages 77-107, January.
    8. Takamiya, Koji, 2001. "Coalition strategy-proofness and monotonicity in Shapley-Scarf housing markets," Mathematical Social Sciences, Elsevier, vol. 41(2), pages 201-213, March.
    9. Ning Neil Yu, 2013. "A one-shot proof of Arrow’s theorem and the Gibbard–Satterthwaite theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(2), pages 145-149, November.
    10. Michel Breton & Vera Zaporozhets, 2009. "On the equivalence of coalitional and individual strategy-proofness properties," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 287-309, August.
    11. Arkadii Slinko, 2006. "How the size of a coalition affects its chances to influence an election," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(1), pages 143-153, January.
    12. Nozomu Muto & Shin Sato, 2016. "A decomposition of strategy-proofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(2), pages 277-294, August.
    13. Cato, Susumu, 2011. "Maskin monotonicity and infinite individuals," Economics Letters, Elsevier, vol. 110(1), pages 56-59, January.
    14. Islam, Jamal & Mohajan, Haradhan & Moolio, Pahlaj, 2010. "Methods of voting system and manipulation of voting," MPRA Paper 50854, University Library of Munich, Germany, revised 06 May 2010.
    15. Maskin, Eric & Sjostrom, Tomas, 2002. "Implementation theory," Handbook of Social Choice and Welfare,in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 5, pages 237-288 Elsevier.
    16. Miller, Michael K., 2009. "Social choice theory without Pareto: The pivotal voter approach," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 251-255, September.
    17. Corchón, Luis C., 2008. "The theory of implementation : what did we learn?," UC3M Working papers. Economics we081207, Universidad Carlos III de Madrid. Departamento de Economía.
    18. Conitzer, Vincent, 2012. "Should social network structure be taken into account in elections?," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 100-102.
    19. Priscilla Man & Shino Takayama, 2013. "A unifying impossibility theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 249-271, October.
    20. Klaus Nehring & Massimiliano Marcellino, 2003. "Monotonicity Implies Strategy-Proofness For Correspondences," Working Papers 193, University of California, Davis, Department of Economics.

    More about this item

    Keywords

    Figure skating; ranking rules; vote aggregation; cycles; maximum likelihood; Kemeny; Copeland; Borda; manipulation;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:lacicr:0414. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis). General contact details of provider: https://edirc.repec.org/data/cirpeca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.