IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v33y2000i2p183-207.html
   My bibliography  Save this article

On the probability that all decision rules select the same winner

Author

Listed:
  • Merlin, V.
  • Tataru, M.
  • Valognes, F.

Abstract

No abstract is available for this item.

Suggested Citation

  • Merlin, V. & Tataru, M. & Valognes, F., 2000. "On the probability that all decision rules select the same winner," Journal of Mathematical Economics, Elsevier, vol. 33(2), pages 183-207, March.
  • Handle: RePEc:eee:mateco:v:33:y:2000:i:2:p:183-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(99)00012-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tataru, Maria & Merlin, Vincent, 1997. "On the relationship of the Condorcet winner and positional voting rules," Mathematical Social Sciences, Elsevier, vol. 34(1), pages 81-90, August.
    2. Gehrlein, William V. & Fishburn, Peter C., 1978. "Probabilities of election outcomes for large electorates," Journal of Economic Theory, Elsevier, vol. 19(1), pages 38-49, October.
    3. Dominique Lepelley, 1996. "Constant scoring rules, Condorcet criteria and single-peaked preferences (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(3), pages 491-500.
    4. William V. Gehrlein, 1998. "The sensitivity of weight selection on the Condorcet efficiency of weighted scoring rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(3), pages 351-358.
    5. Van Newenhizen, Jill, 1992. "The Borda Method Is Most Likely to Respect the Condorcet Principle," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 69-83, January.
    6. Donald G. Saari, 1997. "Explaining Positional Voting Paradoxes: The Simple Case," Discussion Papers 1179, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Sven Berg, 1985. "Paradox of voting under an urn model: The effect of homogeneity," Public Choice, Springer, vol. 47(2), pages 377-387, January.
    8. William Gehrlein & Peter Fishburn, 1983. "Scoring rule sensitivity to weight selection," Public Choice, Springer, vol. 40(3), pages 249-261, January.
    9. Kramer, Gerald H., 1977. "A dynamical model of political equilibrium," Journal of Economic Theory, Elsevier, vol. 16(2), pages 310-334, December.
    10. William Gehrlein, 1999. "On the Probability that all Weighted Scoring Rules Elect the Condorcet Winner," Quality & Quantity: International Journal of Methodology, Springer, vol. 33(1), pages 77-84, February.
    11. Donald G. Saari & Maria M. Tataru, 1999. "The likelihood of dubious election outcomes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 13(2), pages 345-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Kamwa & Vincent Merlin, 2019. "The Likelihood of the Consistency of Collective Rankings Under Preferences Aggregation with Four Alternatives Using Scoring Rules: A General Formula and the Optimal Decision Rule," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1377-1395, April.
    2. Mostapha Diss & Vincent Merlin, 2010. "On the stability of a triplet of scoring rules," Theory and Decision, Springer, vol. 69(2), pages 289-316, August.
    3. William Gehrlein, 1999. "On the Probability that all Weighted Scoring Rules Elect the Condorcet Winner," Quality & Quantity: International Journal of Methodology, Springer, vol. 33(1), pages 77-84, February.
    4. John C. McCabe-Dansted & Arkadii Slinko, 2006. "Exploratory Analysis of Similarities Between Social Choice Rules," Group Decision and Negotiation, Springer, vol. 15(1), pages 77-107, January.
    5. Bonifacio Llamazares & Teresa Peña, 2015. "Positional Voting Systems Generated by Cumulative Standings Functions," Group Decision and Negotiation, Springer, vol. 24(5), pages 777-801, September.
    6. Chatterjee, Swarnendu & Storcken, Ton, 2020. "Frequency based analysis of collective aggregation rules," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 56-66.
    7. Truchon, Michel, 2004. "Aggregation of Rankings in Figure Skating," Cahiers de recherche 0402, Université Laval - Département d'économique.
    8. Merlin, Vincent & Valognes, Fabrice, 2004. "The impact of indifferent voters on the likelihood of some voting paradoxes," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 343-361, November.
    9. William Gehrlein, 2006. "The sensitivity of weight selection for scoring rules to profile proximity to single-peaked preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(1), pages 191-208, January.
    10. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2020. "On Some k -scoring Rules for Committee Elections: Agreement and Condorcet Principle," Revue d'économie politique, Dalloz, vol. 130(5), pages 699-725.
    11. Kamwa, Eric & Merlin, Vincent, 2015. "Scoring rules over subsets of alternatives: Consistency and paradoxes," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 130-138.
    12. Eric Kamwa & Vincent Merlin, 2018. "The Likelihood of the Consistency of Collective Rankings under Preferences Aggregation with Four Alternatives using Scoring Rules: A General Formula and the Optimal Decision Rule," Working Papers hal-01757742, HAL.
    13. William V. Gehrlein & Hemant V. Kher, 2004. "Decision Rules for the Academy Awards Versus Those for Elections," Interfaces, INFORMS, vol. 34(3), pages 226-234, June.
    14. McIntee, Tomas J. & Saari, Donald G., 2017. "Likelihood of voting outcomes with generalized IAC probabilities," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 1-10.
    15. Aaron Meyers & Michael Orrison & Jennifer Townsend & Sarah Wolff & Angela Wu, 2014. "Generalized Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(1), pages 11-27, June.
    16. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2019. "On some k-scoring rules for committee elections: agreement and Condorcet Principle," Working Papers hal-02147735, HAL.
    17. Gehrlein, William V. & Lepelley, Dominique, 2000. "The probability that all weighted scoring rules elect the same winner," Economics Letters, Elsevier, vol. 66(2), pages 191-197, February.
    18. Chatterjee, Swarnendu & Storcken, Ton, 2017. "Frequency Based Analysis of Voting Rules," Research Memorandum 006, Maastricht University, Graduate School of Business and Economics (GSBE).
    19. Wilson, Mark C. & Pritchard, Geoffrey, 2007. "Probability calculations under the IAC hypothesis," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 244-256, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    2. Eric Kamwa, 2018. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Working Papers hal-01786590, HAL.
    3. Regenwetter, Michel & Grofman, Bernard & Marley, A. A. J., 2002. "On the model dependence of majority preference relations reconstructed from ballot or survey data," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 451-466, July.
    4. Mostapha Diss & Eric Kamwa, 2019. "Simulations in Models of Preference Aggregation," Working Papers hal-02424936, HAL.
    5. Kamwa, Eric & Merlin, Vincent, 2015. "Scoring rules over subsets of alternatives: Consistency and paradoxes," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 130-138.
    6. Gehrlein, William V. & Lepelley, Dominique, 2000. "The probability that all weighted scoring rules elect the same winner," Economics Letters, Elsevier, vol. 66(2), pages 191-197, February.
    7. Tataru, Maria & Merlin, Vincent, 1997. "On the relationship of the Condorcet winner and positional voting rules," Mathematical Social Sciences, Elsevier, vol. 34(1), pages 81-90, August.
    8. Mostapha Diss & Vincent Merlin, 2010. "On the stability of a triplet of scoring rules," Theory and Decision, Springer, vol. 69(2), pages 289-316, August.
    9. Merlin, Vincent & Valognes, Fabrice, 2004. "The impact of indifferent voters on the likelihood of some voting paradoxes," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 343-361, November.
    10. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2019. "On some k-scoring rules for committee elections: agreement and Condorcet Principle," Working Papers hal-02147735, HAL.
    11. Eric Kamwa & Vincent Merlin, 2018. "The Likelihood of the Consistency of Collective Rankings under Preferences Aggregation with Four Alternatives using Scoring Rules: A General Formula and the Optimal Decision Rule," Working Papers hal-01757742, HAL.
    12. Mostapha Diss & William Gehrlein, 2012. "Borda’s Paradox with weighted scoring rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 121-136, January.
    13. Martin, Mathieu & Merlin, Vincent, 2002. "The stability set as a social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 91-113, September.
    14. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2020. "On Some k -scoring Rules for Committee Elections: Agreement and Condorcet Principle," Revue d'économie politique, Dalloz, vol. 130(5), pages 699-725.
    15. William V. Gehrlein & Dominique Lepelley, 2015. "The Condorcet Efficiency Advantage that Voter Indifference Gives to Approval Voting Over Some Other Voting Rules," Group Decision and Negotiation, Springer, vol. 24(2), pages 243-269, March.
    16. Eric Kamwa & Fabrice Valognes, 2017. "Scoring Rules and Preference Restrictions: The Strong Borda Paradox Revisited," Revue d'économie politique, Dalloz, vol. 127(3), pages 375-395.
    17. Eric Kamwa & Vincent Merlin, 2019. "The Likelihood of the Consistency of Collective Rankings Under Preferences Aggregation with Four Alternatives Using Scoring Rules: A General Formula and the Optimal Decision Rule," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1377-1395, April.
    18. Gehrlein, William V. & Lepelley, Dominique & Moyouwou, Issofa, 2016. "A note on Approval Voting and electing the Condorcet loser," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 115-122.
    19. Gehrlein, William V. & Lepelley, Dominique, 2001. "The Condorcet efficiency of Borda Rule with anonymous voters," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 39-50, January.
    20. Matthew Harrison-Trainor, 2020. "An Analysis of Random Elections with Large Numbers of Voters," Papers 2009.02979, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:33:y:2000:i:2:p:183-207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.