IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Borda Measure for Social Choice Functions

Listed author(s):
  • Le Breton, Michel
  • Truchon, Michel


The question addressed in this paper is the order of magnitude of the difference between the Borda rule and any given social choice function. A social choice function is a mapping that associates a subset of alternatives to any profile of individual preferences. The Borda rule consists in asking voters to order all alternatives, knowing that the last one in their ranking will receive a score of zero, the second lowest a score of 1, the third a score of 2 and so on. These scores are then weighted by the number of voters that support them to give the Borda score of each alternative. The rule then selects the alternatives with the highest Borda score. In this paper, a simple measure of the difference between the Borda rule and any given social choice function is proposed. It is given by the ratio of the best Borda score achieved by the social choice function under scrutiny over the Borda score of a Borda winner. More precisely, it is the minimum of this ratio over all possible profiles of preferences that is used. This "Borda measure" or at least bounds for this measure is also computed for well known social choice functions. Cet article se penche sur la distance entre la règle de Borda et n'importe quelle autre fonction de choix social. Ces dernières associent un sous-ensemble d'options possibles à tout profil ou configuration de préférences individuelles. La règle de Borda consiste à demander aux votants d'ordonner les options possibles, en leur disant que la dernière dans leur ordre recevra un score nul, l'avant-dernière un score égal à 1, celle qui vient au troisième pire rang un score égal à 2 et ainsi de suite. Ces scores sont ensuite pondérés par le nombre de votants qui les supportent pour donner le score de Borda de chaque option. La règle choisit les options qui ont reçu le score le plus élevé. Dans cet article, une mesure simple de la différence entre la règle de Borda et n'importe quelle autre fonction de choix social est proposée. Elle est donnée par le rapport du meilleur score de Borda obtenu par les options que sélectionne la fonction de choix social considérée sur le score de Borda d'un gagnant de Borda. De façon plus précise, c'est le minimum de ces rapports, sur l'ensemble des profils de préférences, qui est utilisé. Cette mesure de Borda ou, à tout le moins, un intervalle pour cette mesure est calculé pour un certain nombre de fonctions de choix social bien connues.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université Laval - Département d'économique in its series Cahiers de recherche with number 9602.

in new window

Date of creation: 1996
Date of revision: Jun 1997
Handle: RePEc:lvl:laeccr:9602
Contact details of provider: Postal:
Pavillon J.A. De Sève, Québec, Québec, G1K 7P4

Phone: (418) 656-5122
Fax: (418) 656-2707
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Kramer, Gerald H., 1977. "A dynamical model of political equilibrium," Journal of Economic Theory, Elsevier, vol. 16(2), pages 310-334, December.
  2. Paul B. Simpson, 1969. "On Defining Areas of Voter Choice: Professor Tullock on Stable Voting," The Quarterly Journal of Economics, Oxford University Press, vol. 83(3), pages 478-490.
  3. Young, H. P., 1974. "An axiomatization of Borda's rule," Journal of Economic Theory, Elsevier, vol. 9(1), pages 43-52, September.
  4. Jonathan Levin & Barry Nalebuff, 1995. "An Introduction to Vote-Counting Schemes," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 3-26, Winter.
  5. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
  6. Saari, Donald G., 1989. "A dictionary for voting paradoxes," Journal of Economic Theory, Elsevier, vol. 48(2), pages 443-475, August.
  7. Saari, Donald G, 1990. "Susceptibility to Manipulation," Public Choice, Springer, vol. 64(1), pages 21-41, January.
  8. I. Good, 1971. "A note on condorcet sets," Public Choice, Springer, vol. 10(1), pages 97-101, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9602. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.