IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

La démocratie : oui, mais laquelle?

Listed author(s):
  • Truchon, Michel

    (CRÉFA, Université Laval)

This paper uses the results of a poll held at Université Laval to illustrate the difficulty in aggregating individual preferences. In this poll, voters were asked to rank four candidates for a position of dean. The paper provides a brief survey of the literature on the theory of social choice, from which it borrows heavily. It first shows how apparently clear results, from the perspective of the plurality rule, may violate the Condorcet principle according to which a candidate who is ranked ahead of another candidate by a majority of voters should also come ahead in the collective ranking. Next, it presents weighted majority procedures, or positional rules, among which the plurality rule and the Borda count. It discusses manipulation of these rules as a function of the weighting scheme. Going back to the Condorcet principle, it is well known that its application to all pairs of candidates may yield a cycle. This is the famous Condorcet paradox. Many procedures have been proposed to break these cycles while retaining the Condorcet principle whenever possible. This paper advocates for the maximum likelihood procedure as the more natural way out of these cycles. Many examples are provided. Cet article illustre les difficultés inhérentes au processus démocratique à partir des résultats d’une consultation tenue à l’Université Laval, dans le cadre de la nomination d’un doyen. Lors de ce scrutin, les votants devaient en principe ordonner tous les candidats, au nombre de quatre. La compilation des résultats s’avérait donc un exercice d’agrégation des ordres (préférences) individuels en ordre (préférence) collectif. L’article emprunte abondamment à la littérature sur la théorie des choix sociaux et constitue en quelque sorte un survol partiel de cette dernière. Il montre d’abord comment des résultats, en apparence si clairs selon la règle de la pluralité, peuvent venir en contradiction avec le principe de la majorité préconisé par Condorcet. Ce dernier veut qu’un candidat, que la majorité des votants placent avant un autre, se retrouve également avant ce dernier dans l’ordre collectif. L’article présente ensuite les procédures de vote pondéré, les plus connues étant celles de la pluralité et de Borda. Il discute des possibilités de manipulation de ces procédures selon le système de pondération choisi. Pour revenir au principe de Condorcet, son application à toutes les paires de candidats peut malheureusement donner des cycles dans les préférences collectives. C’est le fameux paradoxe de Condorcet. Plusieurs méthodes ont été proposées pour briser ces cycles. L’article présente la méthode dite du maximum de vraisemblance comme celle qui se rapproche davantage de l’esprit du principe de Condorcet. Plusieurs exemples sont fournis tout au long de l’article.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by Société Canadienne de Science Economique in its journal L'Actualité économique.

Volume (Year): 75 (1999)
Issue (Month): 1 (mars-juin-septembre)
Pages: 189-214

in new window

Handle: RePEc:ris:actuec:v:75:y:1999:i:1:p:189-214
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Le Breton, M. & Truchon, M., 1996. "A Borda Measure for Social Choice Functions," Papers 9602, Laval - Recherche en Politique Economique.
  2. Moulin, Herve, 1988. "Condorcet's principle implies the no show paradox," Journal of Economic Theory, Elsevier, vol. 45(1), pages 53-64, June.
  3. Truchon, Michel, 1995. "Voting games and acyclic collective choice rules," Mathematical Social Sciences, Elsevier, vol. 29(2), pages 165-179, April.
  4. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
  5. Donald G. Saari, 1985. "The Optimal Ranking Method is the Borda Count," Discussion Papers 638, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  6. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
  7. Jonathan Levin & Barry Nalebuff, 1995. "An Introduction to Vote-Counting Schemes," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 3-26, Winter.
  8. Le Breton, M. & Truchon, M., 1993. "Acyclicity and the Dispersion of the Veto Power," Papers 9317, Laval - Recherche en Politique Economique.
  9. Paul B. Simpson, 1969. "On Defining Areas of Voter Choice: Professor Tullock on Stable Voting," The Quarterly Journal of Economics, Oxford University Press, vol. 83(3), pages 478-490.
  10. Kramer, Gerald H., 1977. "A dynamical model of political equilibrium," Journal of Economic Theory, Elsevier, vol. 16(2), pages 310-334, December.
  11. Saari, Donald G, 1990. "Susceptibility to Manipulation," Public Choice, Springer, vol. 64(1), pages 21-41, January.
  12. Yves Balasko & Hervé Crès, 1995. "The Probability of Condorcet Cycles and Super Majority Rules," Research Papers by the Institute of Economics and Econometrics, Geneva School of Economics and Management, University of Geneva 95.01, Institut d'Economie et Econométrie, Université de Genève.
  13. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
  14. Truchon, Michel, 1998. "An Extension of the Concordet Criterion and Kemeny Orders," Cahiers de recherche 9813, Université Laval - Département d'économique.
  15. Robert J. Weber, 1995. "Approval Voting," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 39-49, Winter.
  16. Kenneth J. Arrow & Herve Raynaud, 1986. "Social Choice and Multicriterion Decision-Making," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262511754, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:75:y:1999:i:1:p:189-214. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruce Shearer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.