Author
Abstract
Cet article illustre les difficultés inhérentes au processus démocratique à partir des résultats d'une consultation tenue à l'Université Laval, dans le cadre de la nomination d'un doyen. Lors de ce scrutin, les votants devaient en principe ordonner tous les candidats, au nombre de quatre. La compilation des résultats s'avérait donc un exercice d'agrégation des ordres (préférences) individuels en ordre (préférence) collectif. L'article emprunte abondamment à la littérature sur la théorie des choix sociaux et constitue en quelque sorte un survol partiel de cette dernière. Il montre d'abord comment des résultats, en apparence si clairs selon la règle de la pluralité, peuvent venir en contradiction avec le principe de la majorité préconisé par Condorcet. Ce dernier veut qu'un candidat, que la majorité des votants placent avant un autre, se retrouve également avant ce dernier dans l'ordre collectif. L'article présente ensuite les procédures de vote pondéré, les plus connues étant celles de la pluralité et de Borda. Il discute des possibilités de manipulation de ces procédures selon le système de pondération choisi. Pour revenir au principe de Condorcet, son application à toutes les paires de candidats peut malheureusement donner des cycles dans les préférences collectives. C'est le fameux paradoxe de Condorcet. Plusieurs méthodes ont été proposées pour briser ces cycles. L'article présente la méthode dite du maximum de vraisemblance comme celle qui se rapproche davantage de l'esprit du principe de Condorcet. Plusieurs exemples sont fournis tout au long de l'article. Democracy : Yes, But Which One ? This paper uses the results of a poll held at Université Laval to illustrate the difficulty in aggregating individual preferences. In this poll, voters were asked to rank four candidates for a position of dean. The paper provides a brief survey of the literature on the theory of social choice, from which it borrows heavily. It first shows how apparently clear results, from the perspective of the plurality rule, may violate the Condorcet principle according to which a candidate who is ranked ahead of another candidate by a majority of voters should also come ahead in the collective ranking. Next, it presents weighted majority procedures, or positional rules, among which the plurality rule and the Borda count. It discusses manipulation of these rules as a function of the weighting scheme. Going back to the Condorcet principle, it is well known that its application to all pairs of candidates may yield a cycle. This is the famous Condorcet paradox. Many procedures have been proposed to break these cycles while retaining the Condorcet principle whenever possible. This paper advocates for the maximum likelihood procedure as the more natural way out of these cycles. Many examples are provided.
Suggested Citation
Truchon, Michel, 1996.
"La démocratie: oui, mais laquelle?,"
Cahiers de recherche
9610, Université Laval - Département d'économique, revised Oct 1998.
Handle:
RePEc:lvl:laeccr:9610
Download full text from publisher
Other versions of this item:
More about this item
JEL classification:
- D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
- D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
- D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
- D79 - Microeconomics - - Analysis of Collective Decision-Making - - - Other
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9610. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/delvlca.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.