IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03271191.html
   My bibliography  Save this paper

Manipulation of single-winner large elections by vote pairing

Author

Listed:
  • Hayrullah Dindar

    (Istanbul Bilgi University)

  • Jean Lainé

    (LIRSA - Laboratoire interdisciplinaire de recherche en sciences de l'action - CNAM - Conservatoire National des Arts et Métiers [CNAM])

Abstract

Manipulation of indirect elections by vote pairing occurs when a group of voters in different electoral bodies secures a jointly preferred winner by performing pairwise exchanges of votes. We show that in elections involving a large enough number of districts, each with a large enough size, no reasonable constitution is immune to vote-pairing.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hayrullah Dindar & Jean Lainé, 2017. "Manipulation of single-winner large elections by vote pairing," Post-Print hal-03271191, HAL.
  • Handle: RePEc:hal:journl:hal-03271191
    DOI: 10.1016/j.econlet.2017.09.040
    Note: View the original document on HAL open archive server: https://hal-cnam.archives-ouvertes.fr/hal-03271191
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Hartvigsen, 2008. "The Manipulation of Voting Systems," Journal of Business Ethics, Springer, vol. 80(1), pages 13-21, June.
    2. Muller, Eitan & Satterthwaite, Mark A., 1977. "The equivalence of strong positive association and strategy-proofness," Journal of Economic Theory, Elsevier, vol. 14(2), pages 412-418, April.
    3. Sebastian Bervoets & Vincent Merlin, 2016. "On avoiding vote swapping," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 495-509, March.
    4. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    5. Ning Yu, 2015. "A quest for fundamental theorems of social choice," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(3), pages 533-548, March.
    6. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Neil Yu, 2013. "A one-shot proof of Arrow’s theorem and the Gibbard–Satterthwaite theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(2), pages 145-149, November.
    2. Michel Breton & Vera Zaporozhets, 2009. "On the equivalence of coalitional and individual strategy-proofness properties," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 287-309, August.
    3. Nozomu Muto & Shin Sato, 2016. "A decomposition of strategy-proofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(2), pages 277-294, August.
    4. Cato, Susumu, 2011. "Maskin monotonicity and infinite individuals," Economics Letters, Elsevier, vol. 110(1), pages 56-59, January.
    5. Islam, Jamal & Mohajan, Haradhan & Moolio, Pahlaj, 2010. "Methods of voting system and manipulation of voting," MPRA Paper 50854, University Library of Munich, Germany, revised 06 May 2010.
    6. Maskin, Eric & Sjostrom, Tomas, 2002. "Implementation theory," Handbook of Social Choice and Welfare,in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 5, pages 237-288 Elsevier.
    7. Priscilla Man & Shino Takayama, 2013. "A unifying impossibility theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 249-271, October.
    8. Teo Chung Piaw & Jay Sethuraman & Rakesh V. Vohra, 2001. "Integer Programming and Arrovian Social Welfare Functions," Discussion Papers 1316, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. M. Sanver & William Zwicker, 2012. "Monotonicity properties and their adaptation to irresolute social choice rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 371-398, July.
    10. Diss, Mostapha & Doghmi, Ahmed & Tlidi, Abdelmonaim, 2016. "Strategy proofness and unanimity in many-to-one matching markets," MPRA Paper 75927, University Library of Munich, Germany, revised 08 Dec 2016.
    11. Csekő, Imre, 1996. "Választás és mechanizmus. Felületes ismerkedés az implementációelmélettel [Selection and mechanism. Getting superficially acquainted with the implementation theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 420-430.
    12. Uuganbaatar Ninjbat, 2015. "Impossibility theorems are modified and unified," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 849-866, December.
    13. Bochet, Olivier & Sakai, Toyotaka, 2007. "Strategic manipulations of multi-valued solutions in economies with indivisibilities," Mathematical Social Sciences, Elsevier, vol. 53(1), pages 53-68, January.
    14. Pierre Bernhard & Marc Deschamps, 2018. "Arrow’s (im)possibility theorem," Post-Print hal-01941037, HAL.
    15. Cato, Susumu, 2009. "Another induction proof of the Gibbard-Satterthwaite theorem," Economics Letters, Elsevier, vol. 105(3), pages 239-241, December.
    16. Kutlu, Levent, 2009. "A dictatorial domain for monotone social choice functions," Economics Letters, Elsevier, vol. 105(1), pages 14-16, October.
    17. Jay Sethuraman & Teo Chung Piaw & Rakesh V. Vohra, 2003. "Integer Programming and Arrovian Social Welfare Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 309-326, May.
    18. Felix Brandt, 2015. "Set-monotonicity implies Kelly-strategyproofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 793-804, December.
    19. Umut Keskin & M. Remzi Sanver & H. Berkay Tosunlu, 2021. "Recovering non-monotonicity problems of voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(1), pages 125-141, January.
    20. Michel Balinski & Rida Laraki, 2014. "Judge: Don't Vote !," Operations Research, INFORMS, vol. 62(3), pages 483-511, June.

    More about this item

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03271191. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.