IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Maximum likelihood approach to vote aggregation with variable probabilities

  • Mohamed Drissi-Bakhkhat

    ()

  • Michel Truchon

    ()

The Condorcet-Kemeny-Young statistical approach to vote aggregation is based on the assumption that voters have the same probability of comparing correctly two alternatives and that this probability is the same for any pair of alternatives. We relax the second part of this assumption by letting the probability of comparing correctly two alternatives be increasing with the distance between two alternatives in the allegedly true ranking. This leads to a rule in which the majority in favor of one alternative against another one is given a larger weight the larger the distance between the two alternatives in the true ranking, i.e., the larger the probability that the voters compare them correctly. This rule is not Condorcet consistent and does not satisfy local independence of irrelevant alternatives. Yet, it is anonymous, neutral, and paretian. It also appears that its performance in selecting the alternative most likely to be the best improves with the rate at which the probability increases. Copyright Springer-Verlag 2004

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s00355-003-0242-x
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer & The Society for Social Choice and Welfare in its journal Social Choice and Welfare.

Volume (Year): 23 (2004)
Issue (Month): 2 (October)
Pages: 161-185

as
in new window

Handle: RePEc:spr:sochwe:v:23:y:2004:i:2:p:161-185
DOI: 10.1007/s00355-003-0242-x
Contact details of provider: Web page: http://www.springer.com

Web page: http://www.unicaen.fr/recherche/mrsh/scw/

More information through EDIRC

Order Information: Web: http://www.springer.com/economics/economic+theory/journal/355

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
  2. Berg, Sven, 1994. "Evaluation of some weighted majority decision rules under dependent voting," Mathematical Social Sciences, Elsevier, vol. 28(2), pages 71-83, October.
  3. Wit, Jorgen, 1998. "Rational Choice and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 22(2), pages 364-376, February.
  4. Nitzan, Shmuel & Paroush, Jacob, 1982. "Optimal Decision Rules in Uncertain Dichotomous Choice Situations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 289-97, June.
  5. Ladha, Krishna K., 1995. "Information pooling through majority-rule voting: Condorcet's jury theorem with correlated votes," Journal of Economic Behavior & Organization, Elsevier, vol. 26(3), pages 353-372, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:23:y:2004:i:2:p:161-185. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.