IDEAS home Printed from https://ideas.repec.org/p/irn/wpaper/20-05.html
   My bibliography  Save this paper

A daily fever curve for the Swiss economy

Author

Listed:
  • Marc Burri
  • Daniel Kaufmann

Abstract

Because macroeconomic data is published with a substantial delay, assessing the health of the economy during the rapidly evolving Covid-19 crisis is challenging. We develop a fever curve for the Swiss economy using publicly available daily financial market and news data. The indicator can be computed with a delay of one day. Moreover, it is highly correlated with macroeconomic data and survey indicators of Swiss economic activity. Therefore, it provides timely and reliable warning signals if the health of the economy takes a turn for the worse.

Suggested Citation

  • Marc Burri & Daniel Kaufmann, 2020. "A daily fever curve for the Swiss economy," IRENE Working Papers 20-05, IRENE Institute of Economic Research.
  • Handle: RePEc:irn:wpaper:20-05
    as

    Download full text from publisher

    File URL: https://www5.unine.ch/RePEc/ftp/irn/pdfs/WP20-05.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
    2. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    3. Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Monitoring Real Activity in Real Time: The Weekly Economic Index," Liberty Street Economics 20200330b, Federal Reserve Bank of New York.
    4. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    5. Daniel Kaufmann, 2020. "Wie weiter mit der Tiefzinspolitik? Szenarien und Alternativen," IRENE Policy Reports 20-01, IRENE Institute of Economic Research.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 131(4), pages 1593-1636.
    8. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    9. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    10. , 2020. "News Sentiment in the Time of COVID-19," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2020(08), pages 1-05, April.
    11. Kaufmann, Daniel & Lein, Sarah M., 2013. "Sticky prices or rational inattention – What can we learn from sectoral price data?," European Economic Review, Elsevier, vol. 64(C), pages 384-394.
    12. Rebecca Stuart, 2020. "The term structure, leading indicators, and recessions: evidence from Switzerland, 1974–2017," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-17, December.
    13. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    14. Scotti, Chiara, 2016. "Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 1-19.
    15. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    16. Klaus Neusser, 2016. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-32862-1, January.
    17. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    18. Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santiago E. Alvarez & Sarah M. Lein, 2020. "Tracking inflation on a daily basis," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-13, December.
    2. Florian Eckert & Heiner Mikosch, 2020. "Mobility and sales activity during the Corona crisis: daily indicators for Switzerland," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    2. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    3. Aleksandra Halka & Grzegorz Szafranski, 2018. "What Common Factors are Driving Inflation in CEE Countries?," Prague Economic Papers, Prague University of Economics and Business, vol. 2018(2), pages 131-148.
    4. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    5. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    6. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    7. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    8. Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015. "EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries," International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.
    9. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    10. Ahmed, Ali & Granberg, Mark & Troster, Victor & Uddin, Gazi Salah, 2020. "Asymmetric Dynamics between Uncertainty and Unemployment Flows in the United States," LiU Working Papers in Economics 7, Linköping University, Division of Economics, Department of Management and Engineering.
    11. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    12. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    13. Schumacher Christian & Dreger Christian, 2004. "Estimating Large-Scale Factor Models for Economic Activity in Germany: Do They Outperform Simpler Models? / Die Schätzung von großen Faktormodellen für die deutsche Volkswirtschaft: Übertreffen sie ei," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 224(6), pages 731-750, December.
    14. Stavros Degiannakis & George Filis, 2019. "Forecasting European economic policy uncertainty," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 94-114, February.
    15. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    16. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    17. Granziera, Eleonora & Sekhposyan, Tatevik, 2019. "Predicting relative forecasting performance: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
    18. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    19. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, University Library of Munich, Germany.
    20. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.

    More about this item

    Keywords

    Covid-19; Leading indicator; Financial market data; News sentiment; Forecasting; Switzerland;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:irn:wpaper:20-05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sylvain Weber). General contact details of provider: http://edirc.repec.org/data/irenech.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.