IDEAS home Printed from https://ideas.repec.org/p/ipg/wpaper/2014-436.html
   My bibliography  Save this paper

Can Economic Uncertainty, Financial Stress and Consumer Senti-ments Predict U.S. Equity Premium?

Author

Listed:
  • Rangan Gupta
  • Shawkat Hammoudeh
  • Mampho P. Modise
  • Duc Khuong Nguyen

Abstract

This article attempts to examine whether the equity premium in the United States can be predicted from a comprehensive

Suggested Citation

  • Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2014. "Can Economic Uncertainty, Financial Stress and Consumer Senti-ments Predict U.S. Equity Premium?," Working Papers 2014-436, Department of Research, Ipag Business School.
  • Handle: RePEc:ipg:wpaper:2014-436
    as

    Download full text from publisher

    File URL: http://www.ipag.fr/wp-content/uploads/recherche/WP/IPAG_WP_2014_436.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    4. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    5. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    6. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    8. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    9. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    10. repec:mes:emfitr:v:52:y:2016:i:8:p:1935-1955 is not listed on IDEAS
    11. Craig Burnside & Martin Eichenbaum & Isaac Kleshchelski & Sergio Rebelo, 2011. "Do Peso Problems Explain the Returns to the Carry Trade?," Review of Financial Studies, Society for Financial Studies, vol. 24(3), pages 853-891.
    12. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 238-274.
    13. Martin Eichenbaum & Craig Burnside & Sergio Rebelo, 2007. "The Returns to Currency Speculation in Emerging Markets," American Economic Review, American Economic Association, vol. 97(2), pages 333-338, May.
    14. Campbell, John Y., 1999. "Asset prices, consumption, and the business cycle," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 19, pages 1231-1303 Elsevier.
    15. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1414, August.
    18. Rangan Gupta & Mampho P. Modise, 2012. "Valuation Ratios and Stock Return Predictability in South Africa: Is It There?," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(1), pages 70-82, January.
    19. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    20. Gupta, Rangan & Modise, Mampho P., 2012. "South African stock return predictability in the context data mining: The role of financial variables and international stock returns," Economic Modelling, Elsevier, vol. 29(3), pages 908-916.
    21. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    22. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
    23. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    24. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, Elsevier.
    25. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    26. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    27. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    28. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    29. Craig S. Hakkio & William R. Keeton, 2009. "Financial stress: what is it, how can it be measured, and why does it matter?," Economic Review, Federal Reserve Bank of Kansas City, issue Q II, pages 5-50.
    30. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    31. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    32. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    33. Foster, F Douglas & Smith, Tom & Whaley, Robert E, 1997. " Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared," Journal of Finance, American Finance Association, vol. 52(2), pages 591-607, June.
    34. repec:skb:wpaper:cofie-02-2011 is not listed on IDEAS
    35. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    36. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    37. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    38. Rangan Gupta & Mampho P. Modise, 2010. "Valuation Ratios and Stock Price Predictability in South Africa: Is it there?," Working Papers 201016, University of Pretoria, Department of Economics.
    39. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    40. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    41. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Balcilar & Rangan Gupta & Clement Kyei & Mark E. Wohar, 2016. "Does Economic Policy Uncertainty Predict Exchange Rate Returns and Volatility? Evidence from a Nonparametric Causality-in-Quantiles Test," Open Economies Review, Springer, vol. 27(2), pages 229-250, April.
    2. Bekiros, Stelios & Gupta, Rangan & Majumdar, Anandamayee, 2016. "Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis," Finance Research Letters, Elsevier, vol. 18(C), pages 291-296.
    3. repec:ipg:wpaper:2014-459 is not listed on IDEAS
    4. Chuliá, Helena & Gupta, Rangan & Uribe, Jorge M. & Wohar, Mark E., 2017. "Impact of US uncertainties on emerging and mature markets: Evidence from a quantile-vector autoregressive approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 178-191.
    5. repec:ebl:ecbull:eb-17-00090 is not listed on IDEAS
    6. repec:voj:journl:v:63:y:2016:i:3:p:273-291 is not listed on IDEAS
    7. Goodness C. Aye Author-Email: goodness.aye@gmail.com & Rangan Gupta, 2016. "Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(3), pages 273-291, June.
    8. repec:eee:intfin:v:48:y:2017:i:c:p:192-205 is not listed on IDEAS
    9. Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2016. "Stock return predictability and determinants of predictability and profits," Emerging Markets Review, Elsevier, vol. 26(C), pages 153-173.
    10. Bekiros, Stelios & Gupta, Rangan & Kyei, Clement, 2016. "On economic uncertainty, stock market predictability and nonlinear spillover effects," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 184-191.
    11. Christina Christou & Rangan Gupta, 2016. "Forecasting Equity Premium in a Panel of OECD Countries: The Role of Economic Policy Uncertainty," Working Papers 201622, University of Pretoria, Department of Economics.
    12. repec:ipg:wpaper:2014-476 is not listed on IDEAS
    13. repec:wsi:afexxx:v:12:y:2017:i:04:n:s2010495217500166 is not listed on IDEAS
    14. repec:ipg:wpaper:2014-510 is not listed on IDEAS
    15. Gozgor, Giray & Lau, Chi Keung Marco & Bilgin, Mehmet Huseyin, 2016. "Commodity markets volatility transmission: Roles of risk perceptions and uncertainty in financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 35-45.

    More about this item

    Keywords

    Equity premium forecasting; asset pricing model; economic uncertainty; business cycle.;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipg:wpaper:2014-436. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ingmar Schumacher). General contact details of provider: http://edirc.repec.org/data/ipagpfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.