IDEAS home Printed from https://ideas.repec.org/p/ihs/ihsesp/216.html
   My bibliography  Save this paper

Mixtures of t-distributions for Finance and Forecasting

Author

Listed:
  • Giacomini, Raffaella

    (University College London)

  • Gottschling, Andreas

    (Deutsche Bank AG, Credit RiskManagement)

  • Haefke, Christian

    (Department of Economics and Finance, Institute for Advanced Studies, Vienna, Austria)

  • White, Halbert

    (Department of Economics, University of California, San Diego)

Abstract

We explore convenient analytic properties of distributions constructed as mixtures of scaled and shifted t-distributions. A feature that makes this family particularly desirable for econometric applications is that it possesses closed-form expressions for its anti-derivatives (e.g., the cumulative density function). We illustrate the usefulness of these distributions in two applications. In the first application, we use a scaled and shifted t-distribution to produce density forecasts of U.S. inflation and show that these forecasts are more accurate, out-of-sample, than density forecasts obtained using normal or standard t-distributions. In the second application, we replicate the option-pricing exercise of Abadir and Rockinger (2003) using a mixture of scaled and shifted t-distributions and obtain comparably good results, while gaining analytical tractability.

Suggested Citation

  • Giacomini, Raffaella & Gottschling, Andreas & Haefke, Christian & White, Halbert, 2007. "Mixtures of t-distributions for Finance and Forecasting," Economics Series 216, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:216
    as

    Download full text from publisher

    File URL: http://www.ihs.ac.at/publications/eco/es-216.pdf
    File Function: First version, 2007
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    2. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(01), pages 91-115, March.
    3. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    4. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    5. Yi-Ting Chen & Chung-Ming Kuan, 2002. "Time irreversibility and EGARCH effects in US stock index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 565-578.
    6. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    7. Abadir, Karim M. & Rockinger, Michael, 2003. "Density Functionals, With An Option-Pricing Application," Econometric Theory, Cambridge University Press, vol. 19(05), pages 778-811, October.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karl Härdle, Wolfgang & López-Cabrera, Brenda & Teng, Huei-Wen, 2015. "State price densities implied from weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 106-125.
    2. Juan Carlos Martínez-Ovando & Stephen G. Walker, 2011. "Time-series Modelling, Stationarity and Bayesian Nonparametric Methods," Working Papers 2011-08, Banco de México.
    3. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    4. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    ARMA-GARCH models; neural networks; nonparametric density estimation; forecast accuracy; option pricing; risk neutral density;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:216. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Doris Szoncsitz). General contact details of provider: http://edirc.repec.org/data/deihsat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.