IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp106-125.html
   My bibliography  Save this article

State price densities implied from weather derivatives

Author

Listed:
  • Karl Härdle, Wolfgang
  • López-Cabrera, Brenda
  • Teng, Huei-Wen

Abstract

A State Price Density (SPD) is the density function of a risk neutral equivalent martingale measure for option pricing, and is indispensable for exotic option pricing and portfolio risk management. Many approaches have been proposed in the last two decades to calibrate a SPD using financial options from the bond and equity markets. Among these, non and semiparametric methods were preferred because they can avoid model mis-specification of the underlying. However, these methods usually require a large data set to achieve desired convergence properties. One faces the problem in estimation by e.g., kernel techniques that there are not enough observations locally available. For this situation, we employ a Bayesian quadrature method because it allows us to incorporate prior assumptions on the model parameters and hence avoids problems with data sparsity. It is able to compute the SPD of both call and put options simultaneously, and is particularly robust when the market faces the data sparsity issue. As illustration, we calibrate the SPD for weather derivatives, a classical example of incomplete markets with financial contracts payoffs linked to non-tradable assets, namely, weather indices. Finally, we study related weather derivatives data and the dynamics of the implied SPDs.

Suggested Citation

  • Karl Härdle, Wolfgang & López-Cabrera, Brenda & Teng, Huei-Wen, 2015. "State price densities implied from weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 106-125.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:106-125
    DOI: 10.1016/j.insmatheco.2015.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000736
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    2. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833.
    3. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    4. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
    5. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    6. Fred Benth & Wolfgang Karl Härdle & Brenda López Cabrera, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers SFB649DP2009-046, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    8. Abadir, Karim M. & Rockinger, Michael, 2003. "Density Functionals, With An Option-Pricing Application," Econometric Theory, Cambridge University Press, vol. 19(05), pages 778-811, October.
    9. Eric Ghysels & Andrew Harvey & Éric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    10. FRED ESPEN BENTH & JŪRATĖ SALTYTĖ BENTH & STEEN KOEKEBAKKER, 2007. "Putting a Price on Temperature," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 746-767.
    11. Fan, Jianqing & Mancini, Loriano, 2009. "Option Pricing With Model-Guided Nonparametric Methods," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1351-1372.
    12. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    13. Eric Ghysels & Valentin Patilea & Éric Renault & Olivier Torrès, 1997. "Nonparametric Methods and Option Pricing," CIRANO Working Papers 97s-19, CIRANO.
    14. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819.
    15. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    16. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    17. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    18. Ming Yuan, 2009. "State price density estimation via nonparametric mixtures," Papers 0910.1430, arXiv.org.
    19. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    20. Härdle, Wolfgang & Hlávka, Zdenek, 2009. "Dynamics of state price densities," Journal of Econometrics, Elsevier, vol. 150(1), pages 1-15, May.
    21. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    22. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521580137.
    23. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    24. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    25. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. " Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    26. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    27. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826.
    28. Giacomini, Raffaella & Gottschling, Andreas & Haefke, Christian & White, Halbert, 2008. "Mixtures of t-distributions for finance and forecasting," Journal of Econometrics, Elsevier, vol. 144(1), pages 175-192, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenda López Cabrera & Martin Odening & Matthias Ritter, 2013. "Pricing Rainfall Derivatives at the CME," SFB 649 Discussion Papers SFB649DP2013-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
    3. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.

    More about this item

    Keywords

    Weather derivatives; Temperature derivatives; HDD; CDD; State Price Density; Quadrature; Bayesian; Data sparsity;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G19 - Financial Economics - - General Financial Markets - - - Other
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • N23 - Economic History - - Financial Markets and Institutions - - - Europe: Pre-1913
    • N53 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - Europe: Pre-1913

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:106-125. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.