IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0910.1430.html
   My bibliography  Save this paper

State price density estimation via nonparametric mixtures

Author

Listed:
  • Ming Yuan

Abstract

We consider nonparametric estimation of the state price density encapsulated in option prices. Unlike usual density estimation problems, we only observe option prices and their corresponding strike prices rather than samples from the state price density. We propose to model the state price density directly with a nonparametric mixture and estimate it using least squares. We show that although the minimization is taken over an infinitely dimensional function space, the minimizer always admits a finite dimensional representation and can be computed efficiently. We also prove that the proposed estimate of the state price density function converges to the truth at a ``nearly parametric'' rate.

Suggested Citation

  • Ming Yuan, 2009. "State price density estimation via nonparametric mixtures," Papers 0910.1430, arXiv.org.
  • Handle: RePEc:arx:papers:0910.1430
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0910.1430
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. " A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. René Garcia & Eric Ghysels & Éric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    4. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    5. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    6. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 143-159, March.
    7. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    8. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    9. Banz, Rolf W & Miller, Merton H, 1978. "Prices for State-contingent Claims: Some Estimates and Applications," The Journal of Business, University of Chicago Press, vol. 51(4), pages 653-672, October.
    10. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    11. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    12. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karl Härdle, Wolfgang & López-Cabrera, Brenda & Teng, Huei-Wen, 2015. "State price densities implied from weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 106-125.
    2. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0910.1430. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.