IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Essays on Credit Markets and Banking

  • Holmberg, Ulf

    ()

    (Department of Economics, Umeå University)

This thesis consists of four self-contained papers related to banking, credit markets and financial stability. Paper [I] presents a credit market model and finds, using an agent based modeling approach, that credit crunches have a tendency to occur; even when credit markets are almost entirely transparent in the absence of external shocks. We find evidence supporting the asset deterioration hypothesis and results that emphasize the importance of accurate firm quality estimates. In addition, we find that an increase in the debt’s time to maturity, homogenous expected default rates and a conservative lending approach, reduces the probability of a credit crunch. Thus, our results suggest some up till now partially overlooked components contributing to the financial stability of an economy. Paper [II] derives an econometric disequilibrium model for time series data. This is done by error correcting the supply of some good. The model separates between a continuously clearing market and a clearing market in the long-run such that we are able to obtain a novel test of clearing markets. We apply the model to the Swedish market for short-term business loans, and find that this market is characterized by a long-run nonmarket clearing equilibrium. Paper [III] studies the risk-return profile of centralized and decentralized banks. We address the conditions that favor a particular lending regime while acknowledging the effects on lending and returns caused by the course of the business cycle. To analyze these issues, we develop a model which incorporates two stylized facts; (i) banks in which lending decisions are decentralized tend to have a lower cost associated with screening potential borrowers and (ii) decentralized decision-making may generate inefficient outcomes because of lack of coordination. Simulations are used to compare the two banking regimes. Among the results, it is found that even though a bank group where decisions are decentralized may end up with a portfolio of loans which is (relatively) poorly diversified between regions, the ability to effectively screen potential borrowers may nevertheless give a decentralized bank a lower overall risk in the lending portfolio than when decisions are centralized. In Paper [IV], we argue that the practice used in the valuation of a portfolio of assets is important for the calculation of the Value at Risk. In particular, a seller seeking to liquidate a large portfolio may not face horizontal demand curves. We propose a partially new approach for incorporating this fact in the Value at Risk and Expected Shortfall measures and in an empirical illustration, we compare it to a competing approach. We find substantial differences.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.umu.se/DownloadAsset.action?contentId=186104&languageId=3&assetKey=ues840
Download Restriction: no

Paper provided by Umeå University, Department of Economics in its series Umeå Economic Studies with number 840.

as
in new window

Length: 123 pages
Date of creation: 28 Mar 2012
Date of revision:
Handle: RePEc:hhs:umnees:0840
Contact details of provider: Postal: Department of Economics, Umeå University, S-901 87 Umeå, Sweden
Phone: 090 - 786 61 42
Fax: 090 - 77 23 02
Web page: http://www.econ.umu.se/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. GIOT, Pierre & GRAMMIG, Joachim, 2002. "How large is liquidity risk in an automated auction market ?," CORE Discussion Papers 2002054, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  3. Turan G. Bali & Panayiotis Theodossiou, 2008. "Risk Measurement Performance of Alternative Distribution Functions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 411-437.
  4. Clive G. Bowsher, 2004. "Modelling the Dynamics of Cross-Sectional Price Functions: an Econometric Analysis of the Bid and Ask Curves of an Automated Exchange," Economics Papers 2004-W21, Economics Group, Nuffield College, University of Oxford.
  5. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  6. Ernst, Cornelia & Stange, Sebastian & Kaserer, Christoph, 2009. "Measuring market liquidity risk - which model works best?," CEFS Working Paper Series 2009-01, Center for Entrepreneurial and Financial Studies (CEFS), Technische Universität München.
  7. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  8. Quoreshi, Shahiduzzaman, 2005. "Modelling High Frequency Financial Count Data," Umeå Economic Studies 656, Umeå University, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0840. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kjell-Göran Holmberg)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.