IDEAS home Printed from https://ideas.repec.org/p/hhs/umnees/0656.html
   My bibliography  Save this paper

Modelling High Frequency Financial Count Data

Author

Listed:
  • Quoreshi, Shahiduzzaman

    () (Department of Economics, Umeå University)

Abstract

This thesis comprises two papers concerning modelling of financial count data. The papers advance the integer-valued moving average model (INMA), a special case of integer-valued autoregressive moving average (INARMA) model class, and apply the models to the number of stock transactions in intra-day data. Paper [1] advances the INMA model to model the number of transactions in stocks in intra-day data. The conditional mean and variance properties are discussed and model extensions to include, e.g., explanatory variables are offered. Least squares and generalized method of moment estimators are presented. In a small Monte Carlo study a feasible least squares estimator comes out as the best choice. Empirically we find support for the use of long-lag moving average models in a Swedish stock series. There is evidence of asymmetric effects of news about prices on the number of transactions. Paper [2] introduces a bivariate integer-valued moving average model (BINMA) and applies the BINMA model to the number of stock transactions in intra-day data. The BINMA model allows for both positive and negative correlations between the count data series. The study shows that the correlation between series in the BINMA model is always smaller than 1 in an absolute sense. The conditional mean, variance and covariance are given. Model extensions to include explanatory variables are suggested. Using the BINMA model for AstraZeneca and Ericsson B it is found that there is positive correlation between the stock transactions series. Empirically, we find support for the use of long-lag bivariate moving average models for the two series.

Suggested Citation

  • Quoreshi, Shahiduzzaman, 2005. "Modelling High Frequency Financial Count Data," Umeå Economic Studies 656, Umeå University, Department of Economics.
  • Handle: RePEc:hhs:umnees:0656
    as

    Download full text from publisher

    File URL: http://www.econ.umu.se/DownloadAsset.action?contentId=52972&languageId=3&assetKey=ues656
    Download Restriction: no

    References listed on IDEAS

    as
    1. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    2. Brannas, Kurt & Hellstrom, Jorgen & Nordstrom, Jonas, 2002. "A new approach to modelling and forecasting monthly guest nights in hotels," International Journal of Forecasting, Elsevier, vol. 18(1), pages 19-30.
    3. Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
    4. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    5. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    6. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    7. HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," CORE Discussion Papers 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Nikas Rudholm, 2001. "Entry and the Number of Firms in the Swedish Pharmaceuticals Market," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 19(3), pages 351-364, November.
    9. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmberg, Ulf, 2012. "Essays on Credit Markets and Banking," Umeå Economic Studies 840, Umeå University, Department of Economics.
    2. Raattamaa, Tomas, 2016. "Essays on Delegated Search and Temporary Work Agencies," Umeå Economic Studies 935, Umeå University, Department of Economics.

    More about this item

    Keywords

    Count data; Intra-day; High frequency; Time series; Estimation; Long memory; Finance;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0656. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Skog). General contact details of provider: http://edirc.repec.org/data/inumuse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.