IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.01196.html
   My bibliography  Save this paper

Risk Budgeting Portfolios from Simulations

Author

Listed:
  • Bernardo Freitas Paulo da Costa
  • Silvana M. Pesenti
  • Rodrigo S. Targino

Abstract

Risk budgeting is a portfolio strategy where each asset contributes a prespecified amount to the aggregate risk of the portfolio. In this work, we propose an efficient numerical framework that uses only simulations of returns for estimating risk budgeting portfolios. Besides a general cutting planes algorithm for determining the weights of risk budgeting portfolios for arbitrary coherent distortion risk measures, we provide a specialised version for the Expected Shortfall, and a tailored Stochastic Gradient Descent (SGD) algorithm, also for the Expected Shortfall. We compare our algorithm to standard convex optimisation solvers and illustrate different risk budgeting portfolios, constructed using an especially designed Julia package, on real financial data and compare it to classical portfolio strategies.

Suggested Citation

  • Bernardo Freitas Paulo da Costa & Silvana M. Pesenti & Rodrigo S. Targino, 2023. "Risk Budgeting Portfolios from Simulations," Papers 2302.01196, arXiv.org.
  • Handle: RePEc:arx:papers:2302.01196
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.01196
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. PAVLO A. Krokhmal, 2007. "Higher moment coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 373-387.
    2. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    3. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    4. Peter F. Christoffersen & Francis X. Diebold & Til Schuermann, 1998. "Horizon problems and extreme events in financial risk management," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 109-118.
    5. Bellini, Fabio & Cesarone, Francesco & Colombo, Christian & Tardella, Fabio, 2021. "Risk parity with expectiles," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1149-1163.
    6. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Anis, Hassan T. & Kwon, Roy H., 2022. "Cardinality-constrained risk parity portfolios," European Journal of Operational Research, Elsevier, vol. 302(1), pages 392-402.
    11. Bruder, Benjamin & Roncalli, Thierry, 2012. "Managing risk exposures using the risk budgeting approach," MPRA Paper 37246, University Library of Munich, Germany.
    12. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    13. repec:dau:papers:123456789/4688 is not listed on IDEAS
    14. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    15. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    16. Francesco Cesarone & Fabio Tardella, 2017. "Equal Risk Bounding is better than Risk Parity for portfolio selection," Journal of Global Optimization, Springer, vol. 68(2), pages 439-461, June.
    17. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    18. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    19. Xi Bai & Katya Scheinberg & Reha Tutuncu, 2016. "Least-squares approach to risk parity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 357-376, March.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Helmut Mausser & Oleksandr Romanko, 2018. "Long-only equal risk contribution portfolios for CVaR under discrete distributions," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1927-1945, November.
    22. Xiaoyue Li & A. Sinem Uysal & John M. Mulvey, 2021. "Multi-Period Portfolio Optimization using Model Predictive Control with Mean-Variance and Risk Parity Frameworks," Papers 2103.10813, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    2. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    3. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    4. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    6. Giorgio Costa & Roy Kwon, 2020. "A robust framework for risk parity portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 447-466, September.
    7. Francesco Cesarone & Rosella Giacometti & Manuel Luis Martino & Fabio Tardella, 2023. "A return-diversification approach to portfolio selection," Papers 2312.09707, arXiv.org.
    8. Timo Dimitriadis & Yannick Hoga, 2023. "Regressions under Adverse Conditions," Papers 2311.13327, arXiv.org.
    9. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    10. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    11. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    12. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    13. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    14. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    15. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    16. Turan G. Bali & Hao Zhou, 2011. "Risk, uncertainty, and expected returns," Finance and Economics Discussion Series 2011-45, Board of Governors of the Federal Reserve System (U.S.).
    17. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    18. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    19. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    20. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.01196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.