IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2006_023.html
   My bibliography  Save this paper

Finite-Sample Stability of the KPSS Test

Author

Listed:
  • Jönsson, Kristian

    () (Sveriges Riksbank)

Abstract

In the current paper, the finite-sample stability of various implementations of the KPSS test is studied. The implementations considered differ in how the so-called long-run variance is estimated under the null hypothesis. More specifically, the effects that the choice of kernel, the value of the bandwidth parameter and the application of a prewhitening filter have on the KPSS test are investigated. It is found that the finite-sample distribution KPSS test statistic can be very unstable when the Quadratic Spectral kernel is used and/or a prewhitening filter is applied. The instability manifests itself through making the small-sample distribution of the test statistic sensitive to the specific process that generates the data under the null hypothesis. This in turn implies that the size of the test can be hard to control. For the cases investigated in the current paper, it turns out that using the Bartlett kernel in the long-run variance estimation renders the most stable test. By supplying an empirical application, we illustrate the adverse effects that can occur when care is not taken in choosing what test implementation to employ when testing for stationarity in small-sample situations.

Suggested Citation

  • Jönsson, Kristian, 2006. "Finite-Sample Stability of the KPSS Test," Working Papers 2006:23, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:2006_023
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/Papers/WP06_23.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Caner, M. & Kilian, L., 2001. "Size distortions of tests of the null hypothesis of stationarity: evidence and implications for the PPP debate," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 639-657, October.
    2. Kaddour Hadri, 2000. "Testing for stationarity in heterogeneous panel data," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 148-161.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Markku Lanne & Pentti Saikkonen, 2003. "Reducing size distortions of parametric stationarity tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 423-439, July.
    5. Josep Carrion-i-Silvestre & Andreu Sansó, 2006. "A guide to the computation of stationarity tests," Empirical Economics, Springer, vol. 31(2), pages 433-448, June.
    6. Leybourne, S J & McCabe, B P M, 1999. "Modified Stationarity Tests with Data-Dependent Model-Selection Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 264-270, April.
    7. Kristian Jönsson, 2011. "Testing Stationarity in Small‐ and Medium‐Sized Samples when Disturbances are Serially Correlated," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 669-690, October.
    8. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    9. Donggyu Sul & Peter C. B. Phillips & Chi-Young Choi, 2005. "Prewhitening Bias in HAC Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(4), pages 517-546, August.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    11. Leybourne, S J & McCabe, B P M, 1994. "A Consistent Test for a Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 157-166, April.
    12. Bart Hobijn & Philip Hans Franses & Marius Ooms, 2004. "Generalizations of the KPSS-test for stationarity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 483-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.

    More about this item

    Keywords

    Stationarity; Unit root; KPSS test; Size distortion; Long-run variance; Monte Carlo simulation; Private consumption; Permanent Income Hypothesis;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2006_023. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.