IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01107719.html
   My bibliography  Save this paper

Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data

Author

Listed:
  • Barbara Schlomann

    (Fraunhofer ISI - Fraunhofer Institute for Systems and Innovation Research - Fraunhofer-Gesellschaft - Fraunhofer)

  • Joachim Schleich

    (Virginia Polytechnic Institute and State University [Blacksburg], MTS - Management Technologique et Strategique - EESC-GEM Grenoble Ecole de Management)

Abstract

This paper empirically explores factors driving the adoption of low cost energy efficiency measures in the tertiary sector which mainly consists of public and private services, trade, commerce and some small industries. The measures considered include switching off installations or lighting, managing energy use, and routinely considering energy efficiency for new purchases. Our statistical analysis employs single and multivariate probit models relying on more than 1500 observations from a recent representative survey of the tertiary sector in Germany. The findings suggest that the landlord-tenant dilemma holds for the adoption of all low-cost energy efficiency measures considered. They further imply that financial incentives such as higher energy prices accelerate the diffusion of low-cost energy measures. Our findings also provide some evidence that knowledge transfer from the mother company to a subsidiary enhances the diffusion of low-cost energy efficiency measures. Likewise, public-sector organizations are more likely to adopt energy management. By and large though, sectoral heterogeneity appears to have little impact on the adoption of low-cost energy efficiency measures.

Suggested Citation

  • Barbara Schlomann & Joachim Schleich, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Post-Print hal-01107719, HAL.
  • Handle: RePEc:hal:journl:hal-01107719
    DOI: 10.1016/j.rser.2014.11.089
    Note: View the original document on HAL open archive server: https://hal.science/hal-01107719
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01107719/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.rser.2014.11.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jochem, Eberhard & Gruber, Edelgard, 1990. "Obstacles to rational electricity use and measures to alleviate them," Energy Policy, Elsevier, vol. 18(4), pages 340-350, May.
    2. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    3. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    4. Jan Velthuijsen, 1993. "Incentives for investment in energy efficiency: an econometric evaluation and policy implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 3(2), pages 153-169, April.
    5. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    6. Cagno, E. & Trucco, P. & Trianni, A. & Sala, G., 2010. "Quick-E-scan: A methodology for the energy scan of SMEs," Energy, Elsevier, vol. 35(5), pages 1916-1926.
    7. Ástmarsson, Björn & Jensen, Per Anker & Maslesa, Esmir, 2013. "Sustainable renovation of residential buildings and the landlord/tenant dilemma," Energy Policy, Elsevier, vol. 63(C), pages 355-362.
    8. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    9. Schleich, Joachim, 2009. "Barriers to energy efficiency: A comparison across the German commercial and services sector," Ecological Economics, Elsevier, vol. 68(7), pages 2150-2159, May.
    10. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    11. Gruber, Edelgard & Brand, Michael, 1991. "Promoting energy conservation in small and medium-sized companies," Energy Policy, Elsevier, vol. 19(3), pages 279-287, April.
    12. Nagesha, N. & Balachandra, P., 2006. "Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process," Energy, Elsevier, vol. 31(12), pages 1969-1983.
    13. Thollander, Patrik & Danestig, Maria & Rohdin, Patrik, 2007. "Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs," Energy Policy, Elsevier, vol. 35(11), pages 5774-5783, November.
    14. Joachim Schleich, 2004. "Do energy audits help reduce barriers to energy efficiency? An empirical analysis for Germany," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 2(3), pages 226-239.
    15. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    16. Trianni, A. & Cagno, E., 2012. "Dealing with barriers to energy efficiency and SMEs: Some empirical evidences," Energy, Elsevier, vol. 37(1), pages 494-504.
    17. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    18. Tobias Fleitera & Joachim Schleich & Ployplearn Ravivanpong, 2012. "Adoption of energy-efficiency measures in SMEs - An empirical analysis based on energy audit data," Grenoble Ecole de Management (Post-Print) hal-00805748, HAL.
    19. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    20. Schleich, Joachim & Gruber, Edelgard, 2008. "Beyond case studies: Barriers to energy efficiency in commerce and the services sector," Energy Economics, Elsevier, vol. 30(2), pages 449-464, March.
    21. Aramyan, Lusine H. & Lansink, Alfons G.J.M. Oude & Verstegen, Jos A.A.M., 2007. "Factors underlying the investment decision in energy-saving systems in Dutch horticulture," Agricultural Systems, Elsevier, vol. 94(2), pages 520-527, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cunha, Paulo & Neves, Sónia Almeida & Marques, António Cardoso & Serrasqueiro, Zélia, 2020. "Adoption of energy efficiency measures in the buildings of micro-, small- and medium-sized Portuguese enterprises11The financial support of the NECE - Research Unit in Business Science and Economics, ," Energy Policy, Elsevier, vol. 146(C).
    2. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    3. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    4. Ayu Washizu & Satoshi Nakano & Hideo Ishii & Yasuhiro Hayashi, 2019. "Willingness to Pay for Home Energy Management Systems: A Survey in New York and Tokyo," Sustainability, MDPI, vol. 11(17), pages 1-20, September.
    5. Zhang, Wenyue & Li, Jianan & Sun, Chuanwang, 2022. "The impact of OFDI reverse technology spillovers on China's energy intensity: Analysis of provincial panel data," Energy Economics, Elsevier, vol. 116(C).
    6. Brown, Alistair, 2016. "The need for improved financial reporting of a developing country energy utility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1448-1454.
    7. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    2. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    3. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    4. Tobias Fleitera & Joachim Schleich & Ployplearn Ravivanpong, 2012. "Adoption of energy-efficiency measures in SMEs - An empirical analysis based on energy audit data," Post-Print hal-00805748, HAL.
    5. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    6. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    7. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    8. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    9. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    10. Backlund, Sandra & Thollander, Patrik, 2015. "Impact after three years of the Swedish energy audit program," Energy, Elsevier, vol. 82(C), pages 54-60.
    11. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    12. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    13. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    14. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    15. Jose García-Quevedo & Xavier Massa-Camps, 2019. "Why firms invest (or not) in energy efficiency? A review of the econometric evidence," Working Papers 2019/07, Institut d'Economia de Barcelona (IEB).
    16. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    17. Schleich, Joachim & Fleiter, Tobias, 2019. "Effectiveness of energy audits in small business organizations," Resource and Energy Economics, Elsevier, vol. 56(C), pages 59-70.
    18. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    19. Gerarden, Todd D. & Newell, Richard G. & Stavins, Robert N. & Stowe, Robert C., 2015. "An Assessment of the Energy-Efficiency Gap and Its Implications for Climate Change Policy," Climate Change and Sustainable Development 202116, Fondazione Eni Enrico Mattei (FEEM).
    20. Hassen, Sied & Gebrehiwot, Tagel & Arega, Tiruwork, 2018. "Determinants of enterprises use of energy efficient technologies: Evidence from urban Ethiopia," Energy Policy, Elsevier, vol. 119(C), pages 388-395.

    More about this item

    Keywords

    Energy management; low-cost energy efficiency measures; tertiary sector;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01107719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.