IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v198y2025ics0301421525000187.html
   My bibliography  Save this article

Implementing Seoul's greenhouse gas management in buildings: Insights from the SICE model

Author

Listed:
  • Hwang, In Chang
  • Yi, Yoonhye
  • Lee, Hyun-jung
  • Baek, Jong-rak

Abstract

The paper provides a detailed analysis of the newly introduced greenhouse gas emission limits scheme in Seoul, assessing its impact on reducing GHG emissions within the building sector. This is particularly valuable as buildings constitute a major source of emissions in urban areas. By applying the Stock-turnover, Integrated model of Climate and Environment (SICE) model, the paper offers a comprehensive evaluation of how changes in policy and socioeconomic factors affect GHG emissions. This model helps in understanding the dynamics between building sector emissions and broader environmental goals. The study evaluates the effectiveness of current building GHG management policies and suggests that while existing measures have some impact, they are insufficient when considered against ambitious carbon neutrality goals. It underscores the limitations of current approaches focused predominantly on new buildings and voluntary compliance. Based on the findings, the paper offers specific recommendations for enhancing GHG management in the building sector. It advocates for the inclusion of existing buildings in GHG reduction strategies and suggests the implementation of mandatory regulations, rather than solely relying on voluntary compliance. By examining the Seoul model in the context of global urban policy approaches, the study contributes insights that can inform both local and international strategies for urban GHG management.

Suggested Citation

  • Hwang, In Chang & Yi, Yoonhye & Lee, Hyun-jung & Baek, Jong-rak, 2025. "Implementing Seoul's greenhouse gas management in buildings: Insights from the SICE model," Energy Policy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421525000187
    DOI: 10.1016/j.enpol.2025.114511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421525000187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuhaib, Sheikh & Schmatzberger, Senta & Volt, Jonathan & Toth, Zsolt & Kranzl, Lukas & Eugenio Noronha Maia, Iná & Verheyen, Jan & Borragán, Guillermo & Monteiro, Cláudia Sousa & Mateus, Nuno & Fragos, 2022. "Next-generation energy performance certificates: End-user needs and expectations," Energy Policy, Elsevier, vol. 161(C).
    2. Semple, Sally & Jenkins, David, 2020. "Variation of energy performance certificate assessments in the European Union," Energy Policy, Elsevier, vol. 137(C).
    3. Toshi H. Arimura & Tatsuya Abe, 2021. "The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 517-533, July.
    4. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    5. Skillington, Katie & Crawford, Robert H. & Warren-Myers, Georgia & Davidson, Kathryn, 2022. "A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings," Energy Policy, Elsevier, vol. 168(C).
    6. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    7. Zhao, Dafang & Watari, Daichi & Ozawa, Yuki & Taniguchi, Ittetsu & Suzuki, Toshihiro & Shimoda, Yoshiyuki & Onoye, Takao, 2023. "Data-driven online energy management framework for HVAC systems: An experimental study," Applied Energy, Elsevier, vol. 352(C).
    8. Bertoldi, Paolo & Labanca, Nicola & Rezessy, Silvia & Steuwer, Sibyl & Oikonomou, Vlasis, 2013. "Where to place the saving obligation: Energy end-users or suppliers?," Energy Policy, Elsevier, vol. 63(C), pages 328-337.
    9. Nässén, Jonas & Sprei, Frances & Holmberg, John, 2008. "Stagnating energy efficiency in the Swedish building sector--Economic and organisational explanations," Energy Policy, Elsevier, vol. 36(10), pages 3814-3822, October.
    10. Paolo Bertoldi & Marina Economidou & Valentina Palermo & Benigna Boza‐Kiss & Valeria Todeschi, 2021. "How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    11. Abe, Tatsuya & Arimura, Toshi H., 2022. "Causal effects of the Tokyo emissions trading scheme on energy consumption and economic performance," Energy Policy, Elsevier, vol. 168(C).
    12. Mark Watts, 2017. "Cities spearhead climate action," Nature Climate Change, Nature, vol. 7(8), pages 537-538, August.
    13. Annunziata, Eleonora & Rizzi, Francesco & Frey, Marco, 2014. "Enhancing energy efficiency in public buildings: The role of local energy audit programmes," Energy Policy, Elsevier, vol. 69(C), pages 364-373.
    14. Constantine E. Kontokosta & Danielle Spiegel-Feld & Sokratis Papadopoulos, 2020. "The impact of mandatory energy audits on building energy use," Nature Energy, Nature, vol. 5(4), pages 309-316, April.
    15. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    16. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    17. Marina Economidou & Nives Della Valle & Giulia Melica & Paolo Bertoldi, 2024. "The role of European municipalities and regions in financing energy upgrades in buildings," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 26(2), pages 369-401, April.
    18. Hosein, Ada Shereen & Whale, Jonathan & Simsek, Yeliz & Urmee, Tania, 2023. "Exploring energy policy scenarios to transition to a low carbon economy by 2050: A case study on the Northern Territory of Australia," Energy Policy, Elsevier, vol. 180(C).
    19. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    20. Tarun M. Khanna & Giovanni Baiocchi & Max Callaghan & Felix Creutzig & Horia Guias & Neal R. Haddaway & Lion Hirth & Aneeque Javaid & Nicolas Koch & Sonja Laukemper & Andreas Löschel & Maria del Mar Z, 2021. "A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings," Nature Energy, Nature, vol. 6(9), pages 925-932, September.
    21. Zeng, Yongchao & Shi, Yingying & Shahbaz, Muhammad & Liu, Qin, 2024. "Scenario-based policy representative exploration: A novel approach to analyzing policy portfolios and its application to low-carbon energy diffusion," Energy, Elsevier, vol. 296(C).
    22. Karkanias, C. & Boemi, S.N. & Papadopoulos, A.M. & Tsoutsos, T.D. & Karagiannidis, A., 2010. "Energy efficiency in the Hellenic building sector: An assessment of the restrictions and perspectives of the market," Energy Policy, Elsevier, vol. 38(6), pages 2776-2784, June.
    23. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
    24. Jaccard, Mark & Murphy, Rose & Zuehlke, Brett & Braglewicz, Morgan, 2019. "Cities and greenhouse gas reduction: Policy makers or policy takers?," Energy Policy, Elsevier, vol. 134(C).
    25. Walter, Travis & Mathew, Paul, 2022. "City-level impacts of building tune-ups: Findings from Seattle's building tune-ups program," Energy Policy, Elsevier, vol. 168(C).
    26. Albana Kona & Paolo Bertoldi & Şiir Kılkış, 2019. "Covenant of Mayors: Local Energy Generation, Methodology, Policies and Good Practice Examples," Energies, MDPI, vol. 12(6), pages 1-29, March.
    27. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    28. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    29. Hitomi Roppongi & Aki Suwa & Jose A. Puppim De Oliveira, 2017. "Innovating in sub-national climate policy: the mandatory emissions reduction scheme in Tokyo," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 516-532, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Intaek Yoon & YeonSang Lee & Sohyun Kate Yoon, 2017. "An empirical analysis of energy efficiency measures applicable to cities, regions, and local governments, based on the case of South Korea’s local energy saving program," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 863-878, August.
    2. Kim, Jae D. & Trevena, William, 2021. "Measuring the rebound effect: A case study of residential photovoltaic systems in San Diego," Utilities Policy, Elsevier, vol. 69(C).
    3. Martín Bordon Lesme & Jaume Freire-González & Emilio Padilla Rosa, 2020. "The Direct Rebound Effect of Electricity Energy Services in Spanish Households: Evidence from Error Correction Model and System GMM estimates," Working Papers wpdea2002, Department of Applied Economics at Universitat Autonoma of Barcelona.
    4. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    5. Barbetta, Gian Paolo & Canino, Paolo & Cima, Stefano, 2015. "The impact of energy audits on energy efficiency investment of public owners. Evidence from Italy," Energy, Elsevier, vol. 93(P1), pages 1199-1209.
    6. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    7. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.
    8. Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
    9. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    10. Ouyang, Xiaoling & Gao, Beiying & Du, Kerui & Du, Gang, 2018. "Industrial sectors' energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration," Energy, Elsevier, vol. 145(C), pages 408-416.
    11. Liu, Hongxun & Du, Kerui & Li, Jianglong, 2019. "An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand," Energy Economics, Elsevier, vol. 80(C), pages 720-730.
    12. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    13. Maia, Iná E.N. & Harringer, Daniel & Kranzl, Lukas, 2024. "Household budget restrictions as reason for staged retrofits: A case study in Spain," Energy Policy, Elsevier, vol. 188(C).
    14. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    15. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    16. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    17. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    18. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    19. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    20. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421525000187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.