IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00753039.html
   My bibliography  Save this paper

Thinning and harvesting in stochastic forest models

Author

Listed:
  • Kurt L. Helmes

    (HU Berlin - Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin)

  • Richard H. Stockbridge

    (University of Wisconsin - Milwaukee)

Abstract

This paper analyzes a stochastic forest growth model in which the manager is able to first thin the forest to promote better growth before harvesting. Both Wicksell single thinning-and-harvesting cycle and Faustmann on-going rotation problems are considered. The Wicksell problem is analyzed by first restricting the class of decision times to (thinning,harvesting) pairs that bound the growth away from infinity and imbedding the problem in an infinite-dimensional linear program on a space of triplets of measures. These measures capture the thinning and harvesting decisions along with the behavior of the growth process prior to harvest. An auxiliary linear program then leads to a nonlinear optimization problem for which an optimal value and solution are determined. The values of all the problems are be related through a set of inequalities. The solution of the nonlinear problem determines (random) thinning and harvesting times for the single thinning-and-harvesting cycle which demonstrate the equality of the values of these various problems. Finally for the Wicksell problem, the unrestricted class of thinning-and-harvest times is shown to give the same value as the restricted class. The Faustmann on-going thinning-and-harvesting rotation problem is reduced to a Wicksell problem which then allows for the characterization of the value as the solution to a different nonlinear optimization problem. The effects of the opportunity to thin the forest are illustrated on a mean-reverting stochastic model.

Suggested Citation

  • Kurt L. Helmes & Richard H. Stockbridge, 2010. "Thinning and harvesting in stochastic forest models," Post-Print hal-00753039, HAL.
  • Handle: RePEc:hal:journl:hal-00753039
    DOI: 10.1016/j.jedc.2010.10.007
    Note: View the original document on HAL open archive server: https://hal.science/hal-00753039
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00753039/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jedc.2010.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1157-1160, December.
    2. Richard R. Lumley & Mihail Zervos, 2001. "A Model for Investments in the Natural Resource Industry with Switching Costs," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 637-653, November.
    3. Ioannis Karatzas & Fridrik M. Baldursson, 1996. "Irreversible investment and industry equilibrium (*)," Finance and Stochastics, Springer, vol. 1(1), pages 69-89.
    4. Dixit, Avinash K, 1989. "Entry and Exit Decisions under Uncertainty," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 620-638, June.
    5. Miller, Robert A. & Voltaire, Karl, 1983. "A stochastic analysis of the tree paradigm," Journal of Economic Dynamics and Control, Elsevier, vol. 6(1), pages 371-386, September.
    6. Clarke, Harry R. & Reed, William J., 1989. "The tree-cutting problem in a stochastic environment : The case of age-dependent growth," Journal of Economic Dynamics and Control, Elsevier, vol. 13(4), pages 569-595, October.
    7. Alvarez, Luis H. R. & Koskela, Erkki, 2005. "Wicksellian theory of forest rotation under interest rate variability," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 529-545, March.
    8. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(5), pages 1025-1031, October.
    9. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    10. Willassen, Yngve, 1998. "The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 573-596, April.
    11. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    12. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmes, Kurt L. & Stockbridge, Richard H., 2011. "Thinning and harvesting in stochastic forest models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 25-39, January.
    2. Nostbakken, Linda, 2006. "Regime switching in a fishery with stochastic stock and price," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 231-241, March.
    3. Luis H. R. Alvarez & Erkki Koskela, 2002. "Irreversible Investment under Interest Rate Variability: New Results," CESifo Working Paper Series 640, CESifo.
    4. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    5. Joachim Gahungu and Yves Smeers, 2012. "A Real Options Model for Electricity Capacity Expansion," RSCAS Working Papers 2012/08, European University Institute.
    6. GAHUNGU, Joachim & SMEERS, Yves, 2011. "A real options model for electricity capacity expansion," LIDAM Discussion Papers CORE 2011044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Chladna, Zuzana, 2007. "Determination of optimal rotation period under stochastic wood and carbon prices," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1031-1045, May.
    8. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    9. Feil, Jan-Henning & Musshoff, Oliver, 2013. "Investment, disinvestment and policy impact analysis in the dairy sector: a real options approach," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 159229, Humboldt University Berlin, Department of Agricultural Economics.
    10. Tsekrekos, Andrianos E., 2010. "The effect of mean reversion on entry and exit decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 725-742, April.
    11. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    12. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.
    13. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    14. Iraj J. Fooladi & Nargess K. Kayhani, 2003. "Is Entrepreneurship Only About Entering A New Business," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 8(2), pages 1-11, Summer.
    15. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    16. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    17. Di Corato, Luca, 2013. "Profit sharing under the threat of nationalization," Resource and Energy Economics, Elsevier, vol. 35(3), pages 295-315.
    18. Tahvonen, Olli & Salo, Seppo & Kuuluvainen, Jari, 2001. "Optimal forest rotation and land values under a borrowing constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1595-1627, October.
    19. Jyh-Bang Jou, 2000. "Irreversible Investment Decisions Under Uncertainty with Tax Holidays," Public Finance Review, , vol. 28(1), pages 66-81, January.
    20. Bulan, Laarni & Mayer, Christopher & Somerville, C. Tsuriel, 2009. "Irreversible investment, real options, and competition: Evidence from real estate development," Journal of Urban Economics, Elsevier, vol. 65(3), pages 237-251, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00753039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.