IDEAS home Printed from https://ideas.repec.org/p/grz/wpaper/2012-02.html
   My bibliography  Save this paper

Nonparametric prediction of stock returns guided by prior knowledge

Author

Listed:
  • Michael Scholz

    () ( Karl-Franzens University Graz)

  • Jens Perch Nielsen

    () (Cass Business School)

  • Stefan Sperlich

    () (Universite de Geneve)

Abstract

One of the most studied questions in economics and finance is whether equity returns or premiums can be predicted by empirical models. While many authors favor the historical mean or other simple parametric methods, this article focuses on nonlinear relationships. A straightforward bootstrap-test confirms that non- and semiparametric techniques help to obtain better forecasts. It is demonstrated how economic theory directly guides a model in an innovative way. The inclusion of prior knowledge enables for American data a further notable improvement in the prediction of excess stock returns of 35% compared to the fully nonparametric model, as measured by the more complex validated R2 as well as using classical out-of-sample validation. Statistically, a bias and dimension reduction method is proposed to import more structure in the estimation process as an adequate way to circumvent the curse of dimensionality.

Suggested Citation

  • Michael Scholz & Jens Perch Nielsen & Stefan Sperlich, 2012. "Nonparametric prediction of stock returns guided by prior knowledge," Graz Economics Papers 2012-02, University of Graz, Department of Economics.
  • Handle: RePEc:grz:wpaper:2012-02
    as

    Download full text from publisher

    File URL: http://www100.uni-graz.at/vwlwww/forschung/RePEc/wpaper/2012-02.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gabriel Perez-Quiros & Allan Timmermann, 2000. "Firm Size and Cyclical Variations in Stock Returns," Journal of Finance, American Finance Association, vol. 55(3), pages 1229-1262, June.
    2. Owen Lamont, 1998. "Earnings and Expected Returns," Journal of Finance, American Finance Association, vol. 53(5), pages 1563-1587, October.
    3. West, Kenneth D, 1988. "Dividend Innovations and Stock Price Volatility," Econometrica, Econometric Society, vol. 56(1), pages 37-61, January.
    4. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(04), pages 813-841, December.
    5. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    6. Campbell, John Y & Shiller, Robert J, 1988. " Stock Prices, Earnings, and Expected Dividends," Journal of Finance, American Finance Association, vol. 43(3), pages 661-676, July.
    7. Goetzmann, William Nelson & Jorion, Philippe, 1993. " Testing the Predictive Power of Dividend Yields," Journal of Finance, American Finance Association, vol. 48(2), pages 663-679, June.
    8. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    9. Chiquoine, Benjamin & Hjalmarsson, Erik, 2009. "Jackknifing stock return predictions," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 793-803, December.
    10. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    11. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    12. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    13. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1414, August.
    14. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q III, pages 36-58.
    15. John Y. Campbell & John H. Cochrane, 1994. "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," CRSP working papers 412, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    16. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    17. Nielsen, Jens Perch & Sperlich, Stefan, 2003. "Prediction of Stock Returns: A New Way to Look at It," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 33(02), pages 399-417, November.
    18. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    19. Alexander W. Butler & Gustavo Grullon & James P. Weston, 2005. "Can Managers Forecast Aggregate Market Returns?," Journal of Finance, American Finance Association, vol. 60(2), pages 963-986, April.
    20. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    21. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    22. Park, Cheolbeom, 2010. "When does the dividend-price ratio predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 81-101, January.
    23. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    24. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    25. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    26. Goetzmann, William N & Jorion, Philippe, 1995. "A Longer Look at Dividend Yields," The Journal of Business, University of Chicago Press, vol. 68(4), pages 483-508, October.
    27. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    28. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    29. Amit Goyal & Pedro Santa-Clara, 2003. "Idiosyncratic Risk Matters!," Journal of Finance, American Finance Association, vol. 58(3), pages 975-1008, June.
    30. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 433-495.
    31. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    32. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    33. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    34. Campbell, John Y & Shiller, Robert J, 1987. "Cointegration and Tests of Present Value Models," Journal of Political Economy, University of Chicago Press, vol. 95(5), pages 1062-1088, October.
    35. Cochrane, John H, 1992. "Explaining the Variance of Price-Dividend Ratios," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 243-280.
    36. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    37. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    38. Froot, Kenneth A & Obstfeld, Maurice, 1991. "Intrinsic Bubbles: The Case of Stock Prices," American Economic Review, American Economic Association, vol. 81(5), pages 1189-1214, December.
    39. Wolf, Michael, 2000. "Stock Returns and Dividend Yields Revisited: A New Way to Look at an Old Problem," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 18-30, January.
    40. McMillan, David G., 2001. "Nonlinear predictability of stock market returns: Evidence from nonparametric and threshold models," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 353-368, December.
    41. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    42. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    43. David McMillan, 2001. "Non-Linear Predictability of Stock Market Returns: Evidence from Non-Parametric and Threshold Models," Discussion Paper Series, Department of Economics 200102, Department of Economics, University of St. Andrews.
    44. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Xuanyu & Chen, Yan & Ray Liu, K.J., 2016. "A data analytic approach to quantifying scientific impact," Journal of Informetrics, Elsevier, vol. 10(2), pages 471-484.

    More about this item

    Keywords

    Prediction of Stock Returns; Cross-Validation; Prior Knowledge; Bias Reduction; Dimension Reduction;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:grz:wpaper:2012-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Scholz). General contact details of provider: http://edirc.repec.org/data/vgrazat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.