IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Jackknifing stock return predictions

  • Benjamin Chiquoine
  • Erik Hjalmarsson

We show that the general bias reducing technique of jackknifing can be successfully applied to stock return predictability regressions. Compared to standard OLS estimation, the jackknifing procedure delivers virtually unbiased estimates with mean squared errors that generally dominate those of the OLS estimates. The jackknifing method is very general, as well as simple to implement, and can be applied to models with multiple predictors and overlapping observations. Unlike most previous work on inference in predictive regressions, no specific assumptions regarding the data generating process for the predictors are required. A set of Monte Carlo experiments show that the method works well in finite samples and the empirical section finds that out-of-sample forecasts based on the jackknifed estimates tend to outperform those based on the plain OLS estimates. The improved forecast ability also translates into economically relevant welfare gains for an investor who uses the predictive regression, with jackknifed estimates, to time the market.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.federalreserve.gov/pubs/ifdp/2008/932/default.htm
Download Restriction: no

File URL: http://www.federalreserve.gov/pubs/ifdp/2008/932/ifdp932.pdf
Download Restriction: no

Paper provided by Board of Governors of the Federal Reserve System (U.S.) in its series International Finance Discussion Papers with number 932.

as
in new window

Length:
Date of creation: 2008
Date of revision:
Handle: RePEc:fip:fedgif:932
Contact details of provider: Postal: 20th Street and Constitution Avenue, NW, Washington, DC 20551
Web page: http://www.federalreserve.gov/

More information through EDIRC

Order Information: Web: http://www.federalreserve.gov/pubs/ifdp/order.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
  2. Amit Goyal & Ivo Welch, 1999. "Predicting the Equity Premium with Dividend Ratios," Yale School of Management Working Papers amz2437, Yale School of Management, revised 01 Nov 2002.
  3. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  4. Campbell, John & Shiller, Robert, 1988. "Stock Prices, Earnings, and Expected Dividends," Scholarly Articles 3224293, Harvard University Department of Economics.
  5. Jan F. Kiviet & Garry D. A. Phillips, 2005. "Moment approximation for least-squares estimators in dynamic regression models with a unit root *," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 115-142, 07.
  6. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(04), pages 813-841, December.
  7. Jun Yu & Peter Phillips, 2004. "Jackknifing Bond Option Prices," Econometric Society 2004 North American Winter Meetings 115, Econometric Society.
  8. Richardson, Matthew & Stock, James H., 1989. "Drawing inferences from statistics based on multiyear asset returns," Journal of Financial Economics, Elsevier, vol. 25(2), pages 323-348, December.
  9. Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
  10. Nelson, Charles R & Kim, Myung J, 1993. " Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-61, June.
  11. Goetzmann, William Nelson & Jorion, Philippe, 1993. " Testing the Predictive Power of Dividend Yields," Journal of Finance, American Finance Association, vol. 48(2), pages 663-79, June.
  12. Robert F. Stambaugh, 1999. "Predictive Regressions," NBER Technical Working Papers 0240, National Bureau of Economic Research, Inc.
  13. John Y. Campbell & Motohiro Yogo, 2002. "Efficient Tests of Stock Return Predictability," Harvard Institute of Economic Research Working Papers 1972, Harvard - Institute of Economic Research.
  14. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
  15. Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Harvard Institute of Economic Research Working Papers 2047, Harvard - Institute of Economic Research.
  16. Bao, Yong, 2007. "The Approximate Moments Of The Least Squares Estimator For The Stationary Autoregressive Model Under A General Error Distribution," Econometric Theory, Cambridge University Press, vol. 23(05), pages 1013-1021, October.
  17. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-53, October.
  18. Richardson, Matthew & Smith, Tom, 1991. "Tests of Financial Models in the Presence of Overlapping Observations," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 227-54.
  19. Jan F. Kiviet & Garry D. A. Phillips, 2000. "Improved Coefficient and Variance Estimation in Stable First-Order Dynamic Regression Models," Econometric Society World Congress 2000 Contributed Papers 0631, Econometric Society.
  20. Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
  21. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
  22. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
  23. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
  24. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1131-1147, October.
  25. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:932. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kris Vajs)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.