IDEAS home Printed from https://ideas.repec.org/p/ecm/nasm04/536.html

Covariance-based orthogonality tests for regressors with unknown persistence

Author

Listed:
  • Katsumi Shimotsu
  • Alex Maynard

Abstract

This paper develops a new covariance-based test of orthogonality that may beattractive when regressors have roots close or equal to unity. In this case standard regression-based orthogonality tests can suffer from (i) size distortions and (ii) uncertainty regarding the appropriate model in which to frame the alternative hypothesis. The new test has good size and power against a wide range of reasonable alternatives for stationary, non-stationary, and local to unity regressors, while avoiding non-standard limiting distributions, size correction, and unit root pre-tests. Asymptotic results are derived and simulations suggest good small sample performance. As an empirical application, we test for the predictability of stock returns using two persistent regressors, the dividend-price-ratio and short-terminterest rate. The recent literature highlights the role of size distortions in traditional tests using these predictors. On the other hand, while often overturning these rejections, recently employed size-corrected regression-based tests may restrict power to alternatives that become less plausible the more persistent the regressor. The covariance-based tests, which have correct size without restricting power, also show considerably weaker evidence against orthogonality than do traditional regressions. Nevertheless, even allowing for near-unit root behavior, in many cases we still reject orthogonality at long horizons using the dividend yield and at short to medium horizons using the one-month treasury bill rate

Suggested Citation

  • Katsumi Shimotsu & Alex Maynard, 2004. "Covariance-based orthogonality tests for regressors with unknown persistence," Econometric Society 2004 North American Summer Meetings 536, Econometric Society.
  • Handle: RePEc:ecm:nasm04:536
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2025. "Predictive quantile regressions with persistent and heteroskedastic predictors: A powerful 2SLS testing approach," Journal of Econometrics, Elsevier, vol. 249(PB).
    2. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    4. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    5. Alex Maynard, 2006. "The forward premium anomaly: statistical artefact or economic puzzle? New evidence from robust tests," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 39(4), pages 1244-1281, November.
    6. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    8. Liu, Guannan & Yao, Shuang, 2020. "A robust test for predictability with unknown persistence," Economics Letters, Elsevier, vol. 189(C).
    9. Yakov Amihud & Clifford Hurvich & Yi Wang, 2004. "Hypothesis Testing in Predictive Regressions," Finance 0412022, University Library of Munich, Germany.
    10. Jin Lee, 2012. "Nonparametric Testing for Long-Run Neutrality with Applications to US Money and Output Data," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 183-202, August.
    11. Aaron Smallwood; Alex Maynard; Mark Wohar, 2005. "The Long and the Short of It: Long Memory Regressors and Predictive Regressions," Computing in Economics and Finance 2005 384, Society for Computational Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.