IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Hierarchical Bayes Models with Many Instrumental Variables

  • Gary Chamberlain
  • Guido W. Imbens

In this paper, we explore Bayesian inference in models with many instrumental variables that are potentially weakly correlated with the endogenous regressor. The prior distribution has a hierarchical (nested) structure. We apply the methods to the Angrist-Krueger (AK, 1991) analysis of returns to schooling using instrumental variables formed by interacting quarter of birth with state/year dummy variables. Bound, Jaeger, and Baker (1995) show that randomly generated instrumental variables, designed to match the AK data set, give two-stage least squares results that look similar to the results based on the actual instrumental variables. Using a hierarchical model with the AK data, we find a posterior distribution for the parameter of interest that is tight and plausible. Using data with randomly generated instruments, the posterior distribution is diffuse. Most of the information in the AK data can in fact be extracted with quarter of birth as the single instrumental variable. Using artificial data patterned on the AK data, we find that if all the information had been in the interactions between quarter of birth and state/year dummies, then the hierarchical model would still have led to precise inferences, whereas the single instrument model would have suggested that there was no information in the data. We conclude that hierarchical modeling is a conceptually straightforward way of efficiently combining many weak instrumental variables.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Harvard - Institute of Economic Research in its series Harvard Institute of Economic Research Working Papers with number 1781.

as
in new window

Length:
Date of creation: 1996
Date of revision:
Handle: RePEc:fth:harver:1781
Contact details of provider: Postal: 200 Littauer Center, Cambridge, MA 02138
Phone: 617-495-2144
Fax: 617-495-7730
Web page: http://www.economics.harvard.edu/journals/hier

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," NBER Working Papers 3572, National Bureau of Economic Research, Inc.
  2. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  3. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-76, July.
  4. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
  5. Joshua Angrist & Alan Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
  6. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-83, January.
  7. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
  8. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-81, May.
  9. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  10. Geweke, John, 1996. "Monte carlo simulation and numerical integration," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800 Elsevier.
  11. John F. Geweke, 1994. "Bayesian comparison of econometric models," Working Papers 532, Federal Reserve Bank of Minneapolis.
  12. Joshua D. Angrist & Guido W. Imbens & Alan Krueger, 1995. "Jackknife Instrumental Variables Estimation," NBER Technical Working Papers 0172, National Bureau of Economic Research, Inc.
  13. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fth:harver:1781. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.