IDEAS home Printed from https://ideas.repec.org/p/aap/wpaper/207.html
   My bibliography  Save this paper

Shrinkage priors for linear instrumental variable models with many instruments

Author

Listed:
  • P. Richard Hahn
  • Hedibert Lopes

Abstract

This paper addresses the weak instruments problem in linear instrumental variable models from a Bayesian perspective. The new approach has two components. First, a novel predictor-dependent shrinkage prior is developed for the many instruments setting. The prior is constructed based on a factor model decomposition of the matrix of observed instruments, allowing many instruments to be incorporated into the analysis in a robust way. Second, the new prior is implemented via an importance sampling scheme, which utilizes posterior Monte Carlo samples from a first-stage Bayesian regression analysis. This modular computation makes sensitivity analyses straightforward. Two simulation studies are provided to demonstrate the advantages of the new method. As an empirical illustration, the new method is used to estimate a key parameter in macro-economic models: the elasticity of inter-temporal substitution. The empirical analysis produces substantive conclusions in line with previous studies, but certain inconsistencies ofearlier analyses are resolved.

Suggested Citation

  • P. Richard Hahn & Hedibert Lopes, 2014. "Shrinkage priors for linear instrumental variable models with many instruments," Business and Economics Working Papers 207, Unidade de Negocios e Economia, Insper.
  • Handle: RePEc:aap:wpaper:207
    as

    Download full text from publisher

    File URL: https://repositorio.insper.edu.br/handle/11224/5945
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chamberlain, Gary & Imbens, Guido, 1996. "Hierarchical Bayes Models with Many Instrumental Variables," Scholarly Articles 3221489, Harvard University Department of Economics.
    2. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    2. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    3. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
    4. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    5. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    6. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    7. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    8. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    9. Yunxi Zhang & Soeun Kim, 2024. "Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators," Mathematics, MDPI, vol. 12(12), pages 1-15, June.
    10. Bhattacharya, Anirban & Dunson, David B. & Pati, Debdeep & Pillai, Natesh S., 2016. "Sub-optimality of some continuous shrinkage priors," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3828-3842.
    11. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    12. Yanyi Song & Xiang Zhou & Jian Kang & Max T. Aung & Min Zhang & Wei Zhao & Belinda L. Needham & Sharon L. R. Kardia & Yongmei Liu & John D. Meeker & Jennifer A. Smith & Bhramar Mukherjee, 2021. "Bayesian sparse mediation analysis with targeted penalization of natural indirect effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1391-1412, November.
    13. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    14. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    17. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    18. Hauzenberger, Niko & Pfarrhofer, Michael & Stelzer, Anna, 2021. "On the effectiveness of the European Central Bank’s conventional and unconventional policies under uncertainty," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 822-845.
    19. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
    20. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aap:wpaper:207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca Telles (email available below). General contact details of provider: https://edirc.repec.org/data/inspebr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.