IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2013_5.html
   My bibliography  Save this paper

Panel Data Specifications in Nonparametric Kernel Regression: An Application to Production Functions

Author

Listed:
  • Tomasz Czekaj

    () (Department of Food and Resource Economics, University of Copenhagen)

  • Arne Henningsen

    () (Department of Food and Resource Economics, University of Copenhagen)

Abstract

We discuss nonparametric regression models for panel data. A fully nonparametric panel data specification that uses the time variable and the individual identifier as additional (categorical) explanatory variables is considered to be the most suitable. We use this estimator and conventional parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we found the estimates of the fully nonparametric panel data model to be more reliable.

Suggested Citation

  • Tomasz Czekaj & Arne Henningsen, 2013. "Panel Data Specifications in Nonparametric Kernel Regression: An Application to Production Functions," IFRO Working Paper 2013/5, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:wpaper:2013_5
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2013/IFRO_WP_2013_5.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    3. Tomasz Gerard Czekaj & Arne Henningsen, 2012. "Comparing Parametric and Nonparametric Regression Methods for Panel Data: the Optimal Size of Polish Crop Farms," IFRO Working Paper 2012/12, University of Copenhagen, Department of Food and Resource Economics.
    4. Li, Qi & Stengos, Thanasis, 1996. "Semiparametric estimation of partially linear panel data models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 389-397.
    5. Kwabena Gyimah-Brempong & Jeffrey Racine, 2010. "Aid and investment in LDCs: A robust approach," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 19(2), pages 319-349.
    6. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    7. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    8. Henderson, Daniel J. & Ullah, Aman, 2005. "A nonparametric random effects estimator," Economics Letters, Elsevier, vol. 88(3), pages 403-407, September.
    9. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    10. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    11. Hsiao, Cheng & Li, Qi & Racine, Jeffrey S., 2007. "A consistent model specification test with mixed discrete and continuous data," Journal of Econometrics, Elsevier, vol. 140(2), pages 802-826, October.
    12. Jeffery Racine & Jeffrey Hart & Qi Li, 2006. "Testing the Significance of Categorical Predictor Variables in Nonparametric Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 523-544.
    13. Jeffrey Racine, 2008. "Nonparametric econometrics: a primer (in Russian)," Quantile, Quantile, issue 4, pages 7-56, March.
    14. Racine, Jeff, 1997. "Consistent Significance Testing for Nonparametric Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 369-378, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:taf:intecj:v:31:y:2017:i:4:p:535-554 is not listed on IDEAS
    2. Czekaj, Tomasz G., 2015. "Measuring the Technical Efficiency of Farms Producing Environmental Output: Semiparametric Estimation of Multi-output Stochastic Ray Production Frontiers," 2015 Conference, August 9-14, 2015, Milan, Italy 211555, International Association of Agricultural Economists.
    3. Ekpeno L. Effiong & Emmanuel E. Asuquo, 2017. "Migrants' Remittances, Governance and Heterogeneity," International Economic Journal, Taylor & Francis Journals, vol. 31(4), pages 535-554, October.
    4. G. Ardizzi & F. Crudu & C. Petraglia, 2015. "The Impact of Electronic Payments on Bank Cost Efficiency: Nonparametric Evidence," Working Paper CRENoS 201517, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Geraldine Henningsen & Arne Henningsen & Christian Henning, 2015. "Transaction costs and social networks in productivity measurement," Empirical Economics, Springer, vol. 48(1), pages 493-515, February.
    6. Durga P. Gautam, 2014. "Remittances and Governance: Does the Government Free Ride?," Working Papers 14-40, Department of Economics, West Virginia University.
    7. Tomasz Gerard Czekaj, 2013. "Measuring the Technical Efficiency of Farms Producing Environmental Output: Parametric and Semiparametric Estimation of Multi-output Stochastic Ray Production Frontiers," IFRO Working Paper 2013/21, University of Copenhagen, Department of Food and Resource Economics.
    8. Changwoo Nam & Jiyoon Oh, . "Changes in Competition of Small vs. Large Firms from International Trade," Chapters, Economic Research Institute for ASEAN and East Asia (ERIA).
    9. Tomasz Gerard Czekaj & Arne Henningsen, 2013. "Panel Data Nonparametric Estimation of Production Risk and Risk Preferences: An Application to Polish Dairy Farms," IFRO Working Paper 2013/6, University of Copenhagen, Department of Food and Resource Economics.

    More about this item

    Keywords

    nonparametric kernel regression; panel data; choice of the kernel; kernels for categorical variables; production function;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2013_5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Geir Tveit). General contact details of provider: http://edirc.repec.org/data/foikudk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.