IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Proper Consistency

  • Geir B. Asheim

    (University of Oslo)

Proper consistency is defined by the properties that each player takes all opponent strategies into account (is cautious) and deems one opponent strategy to be infinitely more likely than another if the opponent prefers the one to the other (respects preferences). When there is common certain belief of proper consistency, a most preferred strategy is properly rationalizable. Any strategy used with positive probability in a proper equilibrium is properly rationalizable. Only strategies that lead to the backward induction outcome is properly rationalizable in the strategic form of a generic perfect information game. Proper rationalizability can be used to test the robustness of inductive procedures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 0193.

in new window

Date of creation: 01 Aug 2000
Date of revision:
Handle: RePEc:ecm:wc2000:0193
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. E. Dekel & D. Fudenberg, 2010. "Rational Behavior with Payoff Uncertainty," Levine's Working Paper Archive 379, David K. Levine.
  2. Mailath, G.J. & Samuelson, L. & Swinkels, J., 1991. "extensive Form Reasoning in Normal Form Games," Papers 9130, Tilburg - Center for Economic Research.
  3. Battigalli, P. & Siniscalchi, M., 1999. "Interactive Beliefs and Forward Induction," Economics Working Papers eco99/15, European University Institute.
  4. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
  5. Herings, P.J.J. & Vannetelbosch, V., 1997. "Refinements of Rationalizability for Normal-Form Games," Discussion Paper 1997-03, Tilburg University, Center for Economic Research.
  6. T. Börgers, 2010. "Weak Dominance and Approximate Common Knowledge," Levine's Working Paper Archive 378, David K. Levine.
  7. Stalnaker, Robert, 1998. "Belief revision in games: forward and backward induction1," Mathematical Social Sciences, Elsevier, vol. 36(1), pages 31-56, July.
  8. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41 World Scientific Publishing Co. Pte. Ltd..
  9. Epstein, Larry G., 1997. "Preference, Rationalizability and Equilibrium," Journal of Economic Theory, Elsevier, vol. 73(1), pages 1-29, March.
  10. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Choice under Uncertainty," Econometrica, Econometric Society, vol. 59(1), pages 61-79, January.
  11. Asheim, Geir B. & Dufwenberg, Martin, 2000. "Amissibility and Common Belief," Research Papers in Economics 2000:6, Stockholm University, Department of Economics.
  12. Epstein, Larry G & Wang, Tan, 1996. ""Beliefs about Beliefs" without Probabilities," Econometrica, Econometric Society, vol. 64(6), pages 1343-73, November.
  13. Aumann, Robert J., 1995. "Backward induction and common knowledge of rationality," Games and Economic Behavior, Elsevier, vol. 8(1), pages 6-19.
  14. Rubinstein, Ariel, 1991. "Comments on the Interpretation of Game Theory," Econometrica, Econometric Society, vol. 59(4), pages 909-24, July.
  15. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Equilibrium Refinements," Econometrica, Econometric Society, vol. 59(1), pages 81-98, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0193. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.