IDEAS home Printed from https://ideas.repec.org/p/ecl/harjfk/rwp02-047.html
   My bibliography  Save this paper

Innovations, Patent Races, and Endogenous Growth

Author

Listed:
  • Zeira, Joseph

    (Hebrew U of Jerusalem, Harvard U and CEPR)

Abstract

This paper presents a model of innovations and economic growth, which departs from standard endogenous growth models by assuming that the set of potential projects for innovation in each period is limited. The model differs in a number of results from former endogenous growth models. First, it explains patent races, where many research teams search for the same potential innovation. Second, the rate of growth of the economy is bounded and does not rise too much with the scale of the economy. Namely, the model gives rise to a non-linear relationship between the size of the R&D sector and the rate of growth. Third, R&D is Pareto-inefficient, as there are too many research teams searching for the same breakthrough. This problem increases with scale. Fourth, concentration of R&D by monopolistic firms is explained in this model by risk aversion.

Suggested Citation

  • Zeira, Joseph, 2002. "Innovations, Patent Races, and Endogenous Growth," Working Paper Series rwp02-047, Harvard University, John F. Kennedy School of Government.
  • Handle: RePEc:ecl:harjfk:rwp02-047
    as

    Download full text from publisher

    File URL: http://economics.yale.edu/sites/default/files/files/Workshops-Seminars/Macroeconomics/zeira-030304.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Jakob Madsen, 2008. "Semi-endogenous versus Schumpeterian growth models: testing the knowledge production function using international data," Journal of Economic Growth, Springer, vol. 13(1), pages 1-26, March.
    3. Nancy L. Stokey, 1995. "R&D and Economic Growth," Review of Economic Studies, Oxford University Press, vol. 62(3), pages 469-489.
    4. Gilles Saint-Paul, 2003. "Growth Effects Of Nonproprietary Innovation," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 429-439, 04/05.
    5. Philippe Aghion & Mathias Dewatripont & Jeremy C. Stein, 2008. "Academic freedom, private-sector focus, and the process of innovation," RAND Journal of Economics, RAND Corporation, vol. 39(3), pages 617-635.
    6. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    7. Alwyn Young, 1998. "Growth without Scale Effects," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 41-63, February.
    8. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    9. Charles I. Jones, 1995. "Time Series Tests of Endogenous Growth Models," The Quarterly Journal of Economics, Oxford University Press, vol. 110(2), pages 495-525.
    10. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," Review of Economic Studies, Oxford University Press, vol. 58(1), pages 43-61.
    11. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1119-1135.
    12. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    13. Partha Dasgupta & Joseph Stiglitz, 1980. "Uncertainty, Industrial Structure, and the Speed of R&D," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 1-28, Spring.
    14. Segerstrom, Paul S, 1998. "Endogenous Growth without Scale Effects," American Economic Review, American Economic Association, vol. 88(5), pages 1290-1310, December.
    15. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    16. Guido Cozzi & Ornella Tarola, 2006. "R&D Cooperation, Innovation, and Growth," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 162(4), pages 683-701, December.
    17. Dasgupta, Partha & Stiglitz, Joseph, 1980. "Industrial Structure and the Nature of Innovative Activity," Economic Journal, Royal Economic Society, vol. 90(358), pages 266-293, June.
    18. Li, Chol-Won, 2001. "On the Policy Implications of Endogenous Technological Progress," Economic Journal, Royal Economic Society, vol. 111(471), pages 164-179, May.
    19. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    20. Evenson, Robert E & Kislev, Yoav, 1976. "A Stochastic Model of Applied Research," Journal of Political Economy, University of Chicago Press, vol. 84(2), pages 265-281, April.
    21. Segerstrom, Paul S & Anant, T C A & Dinopoulos, Elias, 1990. "A Schumpeterian Model of the Product Life Cycle," American Economic Review, American Economic Association, vol. 80(5), pages 1077-1091, December.
    22. Peter Howitt, 1999. "Steady Endogenous Growth with Population and R & D Inputs Growing," Journal of Political Economy, University of Chicago Press, vol. 107(4), pages 715-730, August.
    23. Glenn C. Loury, 1979. "Market Structure and Innovation," The Quarterly Journal of Economics, Oxford University Press, vol. 93(3), pages 395-410.
    24. Cozzi Guido & Spinesi Luca, 2004. "Information Transmission and the Bounds to Growth," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-17, March.
    25. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Rosaria Carillo & Erasmo Papagni, 2013. "Is the ‘Globalization’ of Science Always Good for Scientific Productivity and Economic Growth?," Metroeconomica, Wiley Blackwell, vol. 64(4), pages 607-644, November.
    2. Moscone, Francesco & Tosetti, Elisa & Costantini, Marco & Ali, Maged, 2013. "The impact of scientific research on health care: Evidence from the OECD countries," Economic Modelling, Elsevier, vol. 32(C), pages 325-332.
    3. Cecilia García-Peñalosa & Jean-François Wen, 2008. "Redistribution and entrepreneurship with Schumpeterian growth," Journal of Economic Growth, Springer, vol. 13(1), pages 57-80, March.
    4. Maria Rosaria Carillo & Erasmo Papagni & Fabian Capitanio, 2008. "Effects of social interactions on scientists' productivity," International Journal of Manpower, Emerald Group Publishing, vol. 29(3), pages 263-279, June.
    5. Maria Rosaria Carillo & Erasmo Papagni, 2004. "Academic Research, Social Interactions And Economic Growth," Working Papers 10_2004, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    6. Federico Etro, 2004. "Innovation by leaders," Economic Journal, Royal Economic Society, vol. 114(495), pages 281-303, April.
    7. Ghiglino, Christian & Tabasso, Nicole, 2016. "Risk aversion in a model of endogenous growth," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 30-40.
    8. Ricottilli, Massimo, 2015. "Innovation through local interaction, imitation and investment waves," Structural Change and Economic Dynamics, Elsevier, vol. 33(C), pages 58-70.
    9. Färnstrand Damsgaard, Erika, 2009. "Patent Scope and Technology Choice," Working Paper Series 792, Research Institute of Industrial Economics.
    10. Federico Etro, 2006. "Market Leaders and Industrial Policy," Working Papers 103, University of Milano-Bicocca, Department of Economics, revised Nov 2006.

    More about this item

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:harjfk:rwp02-047. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/ksharus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.