IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Fractional cointegrating regressions in the presence of linear time trends

Listed author(s):
  • Marmol, Francesc
  • Hassler, Uwe

We consider regressions of nonstationary fractionally integrated variables dominated by linear time trends. The regression errors are short memory, long memory or even nonstationary, and hence allow for a very flexible cointegration model. In case of simple regressions, least squares estimation gives rise to limiting normal distribucions independently of the order of integration of the regressor, whereas the customary t-statistics diverge. We also investigate the possibility of testing for mean reverting equilibrium deviations by means of a residual-based log-periodogram regression. Asymptotic results become more complicated in the multivariate case.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://e-archivo.uc3m.es/bitstream/handle/10016/9794/ws9812.pdf?sequence=1
Download Restriction: no

Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number 9794.

as
in new window

Length:
Date of creation: Jan 1998
Handle: RePEc:cte:wsrepe:9794
Contact details of provider: Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
  2. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  3. repec:bla:restud:v:57:y:1990:i:1:p:99-125 is not listed on IDEAS
  4. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  5. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  6. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  7. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(03), pages 468-497, December.
  8. Hansen, Bruce E., 1992. "Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 87-121.
  9. Ooms, Marius & Hassler, Uwe, 1997. "On the effect of seasonal adjustment on the log-periodogram regression," Economics Letters, Elsevier, vol. 56(2), pages 135-141, October.
  10. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
  11. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
  12. Marmol, Francesc, 1997. "Fractional integration versus trend stationary in time series analysis," DES - Working Papers. Statistics and Econometrics. WS 10498, Universidad Carlos III de Madrid. Departamento de Estadística.
  13. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
  14. West, Kenneth D, 1988. "Asymptotic Normality, When Regressors Have a Unit Root," Econometrica, Econometric Society, vol. 56(6), pages 1397-1417, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:9794. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.