IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/138.html
   My bibliography  Save this paper

Fractional Cointegrating Regression In The Presence Of Linear Time Trends

Author

Listed:
  • Uwe Hassler

    (Free University of Berlin)

  • Francesc Marmol

    (University Carlos III of Madrid)

  • C. Velasco

    (University Carlos III of Madrid)

Abstract

We consider regressions of nonstationary fractionally integrated variables dominated by linear time trends. The regression errors can be short memory, long memory, or even nonstationary, and hence allow for a very flexible cointegration model. Our main contributions are two: First, we analyze the limiting behaviour of the regression estimators. We find in case of simple regressions that limiting normality arises at a rate of convergence that is independent of the order of integration of the regressor. This result does not carry over to the multivariate case, where the limiting distribution is more complicated. Second, we investigate a residual-based, log-periodogram regression. We state conditions that allow consistent estimation of the memory parameter of the error term. This estimator follows a limiting normal distribution and is therefore suitable for cointegration testing. The applicability of this asymptotic result to finite samples is established by means of Monte Carlo experiments.

Suggested Citation

  • Uwe Hassler & Francesc Marmol & C. Velasco, 2000. "Fractional Cointegrating Regression In The Presence Of Linear Time Trends," Computing in Economics and Finance 2000 138, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:138
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Javier Hidalgo & Peter M Robinson, 1997. "Time Series Regression with Long Range Dependence - (Now published in 'Annals of Statistics', 25, (1997)pp.2054-2083.)," STICERD - Econometrics Paper Series 318, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Francesc Marmol & Juan J. Dolado, 1999. "Asymptotic Inference for Nonstationary Fractionally Integrated Processes," Computing in Economics and Finance 1999 513, Society for Computational Economics.
    3. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
    4. Hansen, Bruce E., 1992. "Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 87-121.
    5. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
    6. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    7. Ooms, Marius & Hassler, Uwe, 1997. "On the effect of seasonal adjustment on the log-periodogram regression," Economics Letters, Elsevier, vol. 56(2), pages 135-141, October.
    8. West, Kenneth D, 1988. "Asymptotic Normality, When Regressors Have a Unit Root," Econometrica, Econometric Society, vol. 56(6), pages 1397-1417, November.
    9. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    10. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    11. Marmol, Francesc, 1997. "Fractional integration versus trend stationary in time series analysis," DES - Working Papers. Statistics and Econometrics. WS 10498, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    13. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    14. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    15. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingolf Dittmann, 2000. "Residual‐Based Tests For Fractional Cointegration: A Monte Carlo Study," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(6), pages 615-647, November.
    2. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    3. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
    4. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    5. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    6. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    7. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, vol. 97(2), pages 365-381, August.
    8. Tsay, Wen-Jen & Chung, Ching-Fan, 2000. "The spurious regression of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 155-182, May.
    9. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    10. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    11. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    12. Gonzalo, Jesus & Lee, Tae-Hwy, 1998. "Pitfalls in testing for long run relationships," Journal of Econometrics, Elsevier, vol. 86(1), pages 129-154, June.
    13. Carlos Pestana Barros & Luis Gil-Alana, 2006. "Eta: A Persistent Phenomenon," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(2), pages 95-116.
    14. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    15. Jensen Mark J., 1999. "An Approximate Wavelet MLE of Short- and Long-Memory Parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-17, January.
    16. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
    17. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    18. Belbute, José, 2013. "Does final demand for energy in Portugal exhibit long memory?," MPRA Paper 45717, University Library of Munich, Germany.
    19. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    20. Epaminondas Panas & Vassilia Ninni, 2010. "The Distribution of London Metal Exchange Prices: A Test of the Fractal Market Hypothesis," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 192-210.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.