IDEAS home Printed from https://ideas.repec.org/p/col/000094/005273.html
   My bibliography  Save this paper

A Dynamic Factor Model For The Colombian Inflation

Author

Abstract

ABSTRACT. We use a dynamic factor model proposed by Stock and Watson [1998, 1999,2002a,b] to forecast Colombian inflation. The model includes 92 monthly series observedover the period 1999:01-2008:06. The results show that for short-run horizons, factor modelforecasts significantly outperformed the auto-regressive benchmark model in terms of theroot mean squared forecast error statistic.

Suggested Citation

  • Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," BORRADORES DE ECONOMIA 005273, BANCO DE LA REPÚBLICA.
  • Handle: RePEc:col:000094:005273
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/docum/ftp/borra549.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luis Fernando Melo & Héctor Núñez, 2004. "Combinación de Pronósticos de la Inflación en Presencia de cambios Estructurales," Borradores de Economia 286, Banco de la Republica de Colombia.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Zaher, Fadi, 2007. "Evaluating factor forecasts for the UK: The role of asset prices," International Journal of Forecasting, Elsevier, vol. 23(4), pages 679-693.
    4. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    5. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    6. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
    7. Troy D. Matheson, 2006. "Factor Model Forecasts for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
    8. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    9. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    10. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    11. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    12. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Gianluca Caporello & Agustín Maravall & Fernando J. Sánchez, 2001. "Program TSW Reference Manual," Working Papers 0112, Banco de España;Working Papers Homepage.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Marc-André Gosselin & Greg Tkacz, 2001. "Evaluating Factor Models: An Application to Forecasting Inflation in Canada," Staff Working Papers 01-18, Bank of Canada.
    17. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank.
    18. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    19. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Felipe Londoño & Jorge Andrés Tamayo & Carlos Alberto Velásquez, 2012. "Dinámica de la política monetaria e inflación objetivo en Colombia: una aproximación FAVAR," Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(68), pages 14-71, Junio.
    2. Eliana González, 2010. "Bayesian Model Averaging. An Application to Forecast Inflation in Colombia," BORRADORES DE ECONOMIA 007013, BANCO DE LA REPÚBLICA.
    3. Eliana González, 2011. "Forecasting With Many Predictors. An Empirical Comparison," BORRADORES DE ECONOMIA 007996, BANCO DE LA REPÚBLICA.

    More about this item

    Keywords

    Dynamic factor models; static factor models; forecast accuracy.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:005273. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Clorith Angélica Bahos Olivera). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.