IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Communication Complexity of Uncoupled Nash Equilibrium Procedures

  • Sergiu Hart
  • Yishay Mansour

We study the question of how long it takes players to reach a Nash equilibrium in "uncoupled" setups, where each player initially knows only his own payoff function. We derive lower bounds on the number of bits that need to be transmitted in order to reach a Nash equilibrium, and thus also on the required number of steps. Specifically, we show lower bounds that are exponential in the number of players in each one of the following cases: (1) reaching a pure Nash equilibrium; (2) reaching a pure Nash equilibrium in a Bayesian setting; and (3) reaching a mixed Nash equilibrium. Finally, we show that some very simple and naive procedures lead to similar exponential upper bounds.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ma.huji.ac.il/hart/papers/comcom.pdf?
Download Restriction: no

Paper provided by UCLA Department of Economics in its series Levine's Bibliography with number 122247000000001299.

as
in new window

Length:
Date of creation: 03 Apr 2006
Date of revision:
Handle: RePEc:cla:levrem:122247000000001299
Contact details of provider: Web page: http://www.dklevine.com/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Amotz Cahn, 2004. "General procedures leading to correlated equilibria," International Journal of Game Theory, Springer, vol. 33(1), pages 21-40, January.
  2. AUMANN, Robert J., . "Subjectivity and correlation in randomized strategies," CORE Discussion Papers RP -167, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Peyton Young, 2002. "Learning Hypothesis Testing and Nash Equilibrium," Economics Working Paper Archive 474, The Johns Hopkins University,Department of Economics.
  4. Stoltz, Gilles & Lugosi, Gabor, 2007. "Learning correlated equilibria in games with compact sets of strategies," Games and Economic Behavior, Elsevier, vol. 59(1), pages 187-208, April.
  5. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
  6. Dean P Foster & Peyton Young, 2006. "Regret Testing Leads to Nash Equilibrium," Levine's Working Paper Archive 784828000000000676, David K. Levine.
  7. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  8. Sergiu Hart, 2004. "Adaptive Heuristics," Discussion Paper Series dp372, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  9. S. Hart & A. Mas-Collel, 2010. "A Simple Adaptive Procedure Leading to Correlated Equilibrium," Levine's Working Paper Archive 572, David K. Levine.
  10. Sergiu Hart & Andreu Mas-Colell, 2003. "Uncoupled Dynamics Do Not Lead to Nash Equilibrium," American Economic Review, American Economic Association, vol. 93(5), pages 1830-1836, December.
  11. Hart, Sergiu & Mas-Colell, Andreu, 2001. "A General Class of Adaptive Strategies," Journal of Economic Theory, Elsevier, vol. 98(1), pages 26-54, May.
  12. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levrem:122247000000001299. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.